Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts
Author
Abstract
Suggested Citation
DOI: 10.1515/jtse-2019-0021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- De Gooijer, Jan G. & Zerom, Dawit, 2019. "Semiparametric quantile averaging in the presence of high-dimensional predictors," International Journal of Forecasting, Elsevier, vol. 35(3), pages 891-909.
- Giacomini, Raffaella & Komunjer, Ivana, 2005.
"Evaluation and Combination of Conditional Quantile Forecasts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
- Giacomini, Raffaella & Komunjer, Ivana, 2002. "Evaluation and Combination of Conditional Quantile Forecasts," University of California at San Diego, Economics Working Paper Series qt4n99t4wz, Department of Economics, UC San Diego.
- Raffaella Giacomini & Ivana Komunjer, 2003. "Evaluation and Combination of Conditional Quantile Forecasts," Boston College Working Papers in Economics 571, Boston College Department of Economics.
- Peter Exterkate & Dick Van Dijk & Christiaan Heij & Patrick J. F. Groenen, 2013.
"Forecasting the Yield Curve in a Data‐Rich Environment Using the Factor‐Augmented Nelson–Siegel Model,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(3), pages 193-214, April.
- Exterkate, P. & van Dijk, D.J.C. & Heij, C. & Groenen, P.J.F., 2010. "Forecasting the Yield Curve in a Data-Rich Environment using the Factor-Augmented Nelson-Siegel Model," Econometric Institute Research Papers EI 2010-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Cenesizoglu, Tolga & Timmermann, Allan, 2012. "Do return prediction models add economic value?," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2974-2987.
- Loukia Meligkotsidou & Ekaterini Panopoulou & Ioannis D. Vrontos & Spyridon D. Vrontos, 2014. "A Quantile Regression Approach to Equity Premium Prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 558-576, November.
- Thomas Q. Pedersen, 2015.
"Predictable Return Distributions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 114-132, March.
- Thomas Q. Pedersen, 2010. "Predictable return distributions," CREATES Research Papers 2010-38, Department of Economics and Business Economics, Aarhus University.
- Loukia Meligkotsidou & Ekaterini Panopoulou & Ioannis D. Vrontos & Spyridon D. Vrontos, 2019. "Quantile forecast combinations in realised volatility prediction," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1720-1733, October.
- Panagiotelis, Anastasios & Athanasopoulos, George & Hyndman, Rob J. & Jiang, Bin & Vahid, Farshid, 2019.
"Macroeconomic forecasting for Australia using a large number of predictors,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 616-633.
- Bin Jiang & George Athanasopoulos & Rob J Hyndman & Anastasios Panagiotelis & Farshid Vahid, 2017. "Macroeconomic forecasting for Australia using a large number of predictors," Monash Econometrics and Business Statistics Working Papers 2/17, Monash University, Department of Econometrics and Business Statistics.
- Ma, Shaohui & Fildes, Robert & Huang, Tao, 2016. "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information," European Journal of Operational Research, Elsevier, vol. 249(1), pages 245-257.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018.
"Asset allocation strategies based on penalized quantile regression,"
Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based On Penalized Quantile Regression," "Marco Fanno" Working Papers 0199, Dipartimento di Scienze Economiche "Marco Fanno".
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based on Penalized Quantile Regression," Papers 1507.00250, arXiv.org.
- Evandro Konzen & Flavio A. Ziegelmann, 2016. "LASSO‐Type Penalties for Covariate Selection and Forecasting in Time Series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 592-612, November.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Alessandro Giovannelli, 2012. "Nonlinear Forecasting Using Large Datasets: Evidences on US and Euro Area Economies," CEIS Research Paper 255, Tor Vergata University, CEIS, revised 08 Nov 2012.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2018. "Semiparametric Ultra-High Dimensional Model Averaging of Nonlinear Dynamic Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 919-932, April.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
- Luiz Renato Lima & Fanning Meng, 2017. "Out‐of‐Sample Return Predictability: A Quantile Combination Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 877-895, June.
- Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jan G. De Gooijer, 2023. "Penalized Averaging of Quantile Forecasts from GARCH Models with Many Exogenous Predictors," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 407-424, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jan G. De Gooijer, 2023. "Penalized Averaging of Quantile Forecasts from GARCH Models with Many Exogenous Predictors," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 407-424, June.
- Gebka, Bartosz & Wohar, Mark E., 2019. "Stock return distribution and predictability: Evidence from over a century of daily data on the DJIA index," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 1-25.
- Alexandridis, Antonios K. & Apergis, Iraklis & Panopoulou, Ekaterini & Voukelatos, Nikolaos, 2023. "Equity premium prediction: The role of information from the options market," Journal of Financial Markets, Elsevier, vol. 64(C).
- João F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020.
"Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?,"
Mathematics, MDPI, vol. 8(11), pages 1-16, November.
- Joao F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020. "Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?," Working Papers 202087, University of Pretoria, Department of Economics.
- Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
- Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021.
"Machine learning and oil price point and density forecasting,"
Energy Economics, Elsevier, vol. 102(C).
- Alexandre Bonnet R. Costa & Pedro Cavalcanti G. Ferreira & Wagner P. Gaglianone & Osmani Teixeira C. Guillén & João Victor Issler & Yihao Lin, 2021. "Machine Learning and Oil Price Point and Density Forecasting," Working Papers Series 544, Central Bank of Brazil, Research Department.
- Baetje, Fabian & Menkhoff, Lukas, 2016.
"Equity premium prediction: Are economic and technical indicators unstable?,"
International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
- Baetje, Fabian & Menkhoff, Lukas, 2015. "Equity premium prediction: Are economic and technical indicators instable?," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113079, Verein für Socialpolitik / German Economic Association.
- Baetje, Fabian & Menkhoff, Lukas, 2015. "Equity premium prediction: Are economic and technical indicators instable?," Kiel Working Papers 1987, Kiel Institute for the World Economy (IfW Kiel).
- Fabian Baetje & Lukas Menkhoff, 2016. "Equity Premium Prediction: Are Economic and Technical Indicators Unstable?," Discussion Papers of DIW Berlin 1552, DIW Berlin, German Institute for Economic Research.
- repec:zbw:bofrdp:2020_006 is not listed on IDEAS
- Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
- Gebka, Bartosz & Wohar, Mark E., 2018. "The predictive power of the yield spread for future economic expansions: Evidence from a new approach," Economic Modelling, Elsevier, vol. 75(C), pages 181-195.
- Gonçalo Faria & Fabio Verona, 2021.
"Time-frequency forecast of the equity premium,"
Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2119-2135, December.
- Faria, Gonçalo & Verona, Fabio, 2020. "Time-frequency forecast of the equity premium," Bank of Finland Research Discussion Papers 6/2020, Bank of Finland.
- Rangan Gupta & Anandamayee Majumdar & Mark E. Wohar, 2017.
"The Role of Current Account Balance in Forecasting the US Equity Premium: Evidence From a Quantile Predictive Regression Approach,"
Open Economies Review, Springer, vol. 28(1), pages 47-59, February.
- Rangan Gupta & Anandamayee Majumdar & Mark Wohar, 2016. "The Role of Current Account Balance in Forecasting the US Equity Premium: Evidence from a Quantile Predictive Regression Approach," Working Papers 201612, University of Pretoria, Department of Economics.
- Gonçalo Faria & Fabio Verona, 2021.
"Time-frequency forecast of the equity premium,"
Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2119-2135, December.
- Faria, Gonçalo & Verona, Fabio, 2020. "Time-frequency forecast of the equity premium," Research Discussion Papers 6/2020, Bank of Finland.
- Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
- Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021.
"Forecasting stock returns with large dimensional factor models,"
Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
- Alessandro Giovannelli & Daniele Massacci & Stefano Soccorsi, 2020. "Forecasting Stock Returns with Large Dimensional Factor Models," Working Papers 305661169, Lancaster University Management School, Economics Department.
- Lima, Luiz Renato & Meng, Fanning & Godeiro, Lucas, 2020. "Quantile forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1149-1162.
- De Gooijer, Jan G. & Zerom, Dawit, 2019. "Semiparametric quantile averaging in the presence of high-dimensional predictors," International Journal of Forecasting, Elsevier, vol. 35(3), pages 891-909.
- Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
- Oleg Rytchkov & Xun Zhong, 2020. "Information Aggregation and P-Hacking," Management Science, INFORMS, vol. 66(4), pages 1605-1626, April.
- Huiyu Huang & Tae-Hwy Lee, 2010.
"To Combine Forecasts or to Combine Information?,"
Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
- Huiyu Huang & Tae-Hwy Lee, 2006. "To Combine Forecasts or to Combine Information?," Working Papers 200806, University of California at Riverside, Department of Economics, revised Feb 2009.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
More about this item
Keywords
large database; non-parametric; parametric; penalized averaging; quantile forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:12:y:2020:i:1:p:15:n:4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.