IDEAS home Printed from https://ideas.repec.org/a/for/ijafaa/y2007i6p12-15.html
   My bibliography  Save this article

Minimum Sample Size requirements for Seasonal Forecasting Models

Author

Listed:
  • Rob J. Hyndman
  • Andrey V. Kostenko

Abstract

Authors Rob Hyndman and Andrey Kostenko discuss the bare minimum data requirements for fitting three common types of seasonal models: regression with seasonal dummies, exponential smoothing, and ARIMA. Achieving the requisite minimum numbers, however, does not ensure adequate estimates of seasonality. The amount of additional data required depends on the amount of noise (random variation) in the data. Unfortunately, there are no simple rules about sample size, and the authors note that published tables on sample size requirements are overly simplified. Copyright International Institute of Forecasters, 2007

Suggested Citation

  • Rob J. Hyndman & Andrey V. Kostenko, 2007. "Minimum Sample Size requirements for Seasonal Forecasting Models," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 6, pages 12-15, Spring.
  • Handle: RePEc:for:ijafaa:y:2007:i:6:p:12-15
    as

    Download full text from publisher

    File URL: https://foresight.forecasters.org/shop/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan, Man-pui Sally & Winneg, Kenneth & Hawkins, Lauren & Farhadloo, Mohsen & Jamieson, Kathleen Hall & Albarracín, Dolores, 2018. "Legacy and social media respectively influence risk perceptions and protective behaviors during emerging health threats: A multi-wave analysis of communications on Zika virus cases," Social Science & Medicine, Elsevier, vol. 212(C), pages 50-59.
    2. Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251, April.
    3. Gati Gayatri & I Gede Nyoman Mindra Jaya & Vience Mutiara Rumata, 2022. "The Indonesian Digital Workforce Gaps in 2021–2025," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    4. Anna Manowska & Anna Bluszcz, 2022. "Forecasting Crude Oil Consumption in Poland Based on LSTM Recurrent Neural Network," Energies, MDPI, vol. 15(13), pages 1-23, July.
    5. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    6. Tomasz Śmiałkowski & Andrzej Czyżewski, 2022. "Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters," Energies, MDPI, vol. 15(24), pages 1-23, December.
    7. Pedro M. R. Bento & Jose A. N. Pombo & Maria R. A. Calado & Silvio J. P. S. Mariano, 2021. "Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting," Energies, MDPI, vol. 14(21), pages 1-21, November.
    8. Wu, Wen-Ze & Zeng, Liang & Liu, Chong & Xie, Wanli & Goh, Mark, 2022. "A time power-based grey model with conformable fractional derivative and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Yusuf Priyo Anggodo & Abba Suganda Girsang, 2024. "A Novel Modified Binning and Logistics Regression to Handle Shifting in Credit Scoring," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2371-2403, June.
    10. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
    11. Vanella, Patrizio, 2016. "The Total Fertility Rate in Germany until 2040 - A Stochastic Principal Components Projection based on Age-specific Fertility Rates," Hannover Economic Papers (HEP) dp-579, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    12. Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251.
    13. Muhammad Shoaib & Asaad Y. Shamseldin & Sher Khan & Mudasser Muneer Khan & Zahid Mahmood Khan & Tahir Sultan & Bruce W. Melville, 2018. "A Comparative Study of Various Hybrid Wavelet Feedforward Neural Network Models for Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 83-103, January.
    14. Wen-Ze Wu & Chong Liu & Wanli Xie & Mark Goh & Tao Zhang, 2023. "Predictive analysis of the industrial water-waste-energy system using an optimised grey approach: A case study in China," Energy & Environment, , vol. 34(5), pages 1639-1656, August.
    15. Hloušková, Z. & Ženíšková, P. & Prášilová, M., 2018. "Comparison of Agricultural Costs Prediction Approaches," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 10(1).
    16. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
    17. Jiří Šindelář, 2019. "Sales forecasting in financial distribution: a comparison of quantitative forecasting methods," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 24(3), pages 69-80, December.
    18. Waseem Khan & Sana Fatima, 2016. "An Assessment of Sectoral Dynamics and Employment Shift in Indian and Chinese Economy," South Asian Survey, , vol. 23(2), pages 119-134, September.
    19. Nils Droste & Claudia Becker & Irene Ring & Rui Santos, 2018. "Decentralization Effects in Ecological Fiscal Transfers: A Bayesian Structural Time Series Analysis for Portugal," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(4), pages 1027-1051, December.
    20. repec:jss:jstsof:27:i03 is not listed on IDEAS
    21. Jussim, Maxim, 2014. "Entwicklung eines Simulationstools zur Analyse von Prognose- und Dispositionsentscheidungen im Krankenhausbereich," Bayreuth Reports on Information Systems Management 57, University of Bayreuth, Chair of Information Systems Management.
    22. Carmona-Benítez, Rafael Bernardo & Nieto, María Rosa, 2020. "SARIMA damp trend grey forecasting model for airline industry," Journal of Air Transport Management, Elsevier, vol. 82(C).
    23. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.
    24. Mohammed Aminu Sualihu & M. Arifur Rahman, 2014. "Payment Behaviour of Electricity Consumers: Evidence from the Greater Accra Region of Ghana," Global Business Review, International Management Institute, vol. 15(3), pages 477-492, September.
    25. Dittmer, Celina & Krümpel, Johannes & Lemmer, Andreas, 2021. "Power demand forecasting for demand-driven energy production with biogas plants," Renewable Energy, Elsevier, vol. 163(C), pages 1871-1877.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:for:ijafaa:y:2007:i:6:p:12-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Gilliland (email available below). General contact details of provider: https://edirc.repec.org/data/iiforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.