IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/68616.html
   My bibliography  Save this paper

Forecasting tourist arrivals to Turkey

Author

Listed:
  • Yılmaz, Engin

Abstract

Modeling and forecasting techniques of the tourist arrivals are many and diverse. Th ere is no unique model that exactly outperforms the other models in every situation. Actually a few studies have realized modeling and forecasting the tourist arrivals to Turkey and these studies have not focused on the total tourist arrivals. Th ese studies have focused on the tourist arrivals to Turkey country by country (or OECD countries). In addition to this, structural time series models have not been used in modeling and forecasting the tourist arrivals to Turkey. In this sense, this paper is the fi rst study which uses the seasonal autoregressive integrated moving average model and the structural time series model in order to forecast the total tourist arrivals to Turkey. Two diff erent models are developed to forecast the total tourist arrivals to Turkey using monthly data for the period 2002-2013. Th e results of the study show that two models provide accurate predictions but the seasonal autoregressive integrated moving average model produces more accurate short-term forecasts than the structural time series model. It is noted that the seasonal autoregressive integrated moving average model shows a very successful performance in the forecasting the total tourist arrivals to Turkey.

Suggested Citation

  • Yılmaz, Engin, 2015. "Forecasting tourist arrivals to Turkey," MPRA Paper 68616, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:68616
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/68616/1/MPRA_paper_68616.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
    2. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
    3. Kulendran, N. & King, Maxwell L., 1997. "Forecasting international quarterly tourist flows using error-correction and time-series models," International Journal of Forecasting, Elsevier, vol. 13(3), pages 319-327, September.
    4. du Preez, Johann & Witt, Stephen F., 2003. "Univariate versus multivariate time series forecasting: an application to international tourism demand," International Journal of Forecasting, Elsevier, vol. 19(3), pages 435-451.
    5. Victor Gómez & Agustin Maravall & Daniel Peña, 1999. "Missing observations in ARIMA models: Skipping strategy versus outlier approach," Working Papers 9701, Banco de España.
    6. Koopman, Siem Jan & Ooms, Marius, 2006. "Forecasting daily time series using periodic unobserved components time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
    7. Witt, Stephen F. & Witt, Christine A., 1995. "Forecasting tourism demand: A review of empirical research," International Journal of Forecasting, Elsevier, vol. 11(3), pages 447-475, September.
    8. Song, Haiyan & Hyndman, Rob J., 2011. "Tourism forecasting: An introduction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 817-821, July.
    9. Lindsay W. Turner & Stephen F. Witt, 2001. "Forecasting Tourism Using Univariate and Multivariate Structural Time Series Models," Tourism Economics, , vol. 7(2), pages 135-147, June.
    10. Hossein Hassani & Emmanuel Sirimal Silva & Nikolaos Antonakakis & George Filis & Rangan Gupta, 2015. "Forecasting Accuracy Evaluation of Tourist Arrivals: Evidence from Parametric and Non-Parametric Techniques," Working Papers 201552, University of Pretoria, Department of Economics.
    11. Jae H. Kim & Imad Moosa, 2001. "Seasonal Behaviour of Monthly International Tourist Flows: Specification and Implications for Forecasting Models," Tourism Economics, , vol. 7(4), pages 381-396, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nyoni, Thabani, 2021. "Modeling and forecasting international tourism demand in Zimbabwe: a bright future for Zimbabwe's tourism industry," MPRA Paper 110901, University Library of Munich, Germany, revised 01 Dec 2021.
    2. Salim Jibrin Danbatta & Asaf Varol, 2022. "ANN–polynomial–Fourier series modeling and Monte Carlo forecasting of tourism data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 920-932, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    2. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    3. Elisa Jorge-González & Enrique González-Dávila & Raquel Martín-Rivero & Domingo Lorenzo-Díaz, 2020. "Univariate and multivariate forecasting of tourism demand using state-space models," Tourism Economics, , vol. 26(4), pages 598-621, June.
    4. Han Liu & Ying Liu & Yonglian Wang & Changchun Pan, 2019. "Hot topics and emerging trends in tourism forecasting research: A scientometric review," Tourism Economics, , vol. 25(3), pages 448-468, May.
    5. Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011. "Forecasting tourist arrivals using time-varying parameter structural time series models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869.
    6. Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
    7. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    8. Niematallah Elamin & Mototsugu Fukushige, 2016. "Forecasting extreme seasonal tourism demand," Discussion Papers in Economics and Business 16-23, Osaka University, Graduate School of Economics.
    9. Niematallah Elamin & Mototsugu Fukushige, 2018. "Forecasting extreme seasonal tourism demand: the case of Rishiri Island in Japan," Asia-Pacific Journal of Regional Science, Springer, vol. 2(2), pages 279-296, August.
    10. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    11. Ogechi Adeola & Nathaniel Boso & Olaniyi Evans, 2018. "Drivers of international tourism demand in Africa," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 53(1), pages 25-36, January.
    12. Nicholas Apergis & Andrea Mervar & James E. Payne, 2017. "Forecasting disaggregated tourist arrivals in Croatia," Tourism Economics, , vol. 23(1), pages 78-98, February.
    13. George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
    14. Gunter, Ulrich & Önder, Irem, 2015. "Forecasting international city tourism demand for Paris: Accuracy of uni- and multivariate models employing monthly data," Tourism Management, Elsevier, vol. 46(C), pages 123-135.
    15. Guizzardi, Andrea & Mazzocchi, Mario, 2010. "Tourism demand for Italy and the business cycle," Tourism Management, Elsevier, vol. 31(3), pages 367-377.
    16. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    17. Stephen F. Witt & Haiyan Song & Stephen Wanhill, 2004. "Forecasting Tourism-Generated Employment: The Case of Denmark," Tourism Economics, , vol. 10(2), pages 167-176, June.
    18. Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Annals of Tourism Research, Elsevier, vol. 88(C).
    19. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    20. Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011. "Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures," International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922, July.

    More about this item

    Keywords

    structural time series models; arima; tourist arrivals; tourist demand; Turkey;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:68616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.