IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v210y2011i3p606-617.html
   My bibliography  Save this article

Real-time fuzzy regression analysis: A convex hull approach

Author

Listed:
  • Ramli, Azizul Azhar
  • Watada, Junzo
  • Pedrycz, Witold

Abstract

In this study, we present an enhancement of fuzzy regression analysis with regard to its aspect of real-time processing. Let us recall that fuzzy regression generalizes the concept of classical (numeric) regression in the sense of bringing additional capabilities that allow the model to deal with fuzzy (granular) data. We show that a convex hull method provides a useful vehicle to reduce computing time, which becomes of particular relevance in case of real-time data analysis. Our objective is to develop an efficient real-time fuzzy regression analysis based on the use of convex hull, specifically a Beneath-Beyond algorithm. In this algorithm, the re-construction of convex hull edges depends on incoming vertices while a re-computing procedure can be realized in real-time. We demonstrate the use of the developed enhancement to application to unit performance assessment and air pollution data. An important role of convex hull is contrasted with the limitations of linear programming used in the "standard" regression.

Suggested Citation

  • Ramli, Azizul Azhar & Watada, Junzo & Pedrycz, Witold, 2011. "Real-time fuzzy regression analysis: A convex hull approach," European Journal of Operational Research, Elsevier, vol. 210(3), pages 606-617, May.
  • Handle: RePEc:eee:ejores:v:210:y:2011:i:3:p:606-617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00648-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Peijun & Tanaka, Hideo, 2010. "Decision making with interval probabilities," European Journal of Operational Research, Elsevier, vol. 203(2), pages 444-454, June.
    2. Hojati, Mehran & Bector, C. R. & Smimou, Kamal, 2005. "A simple method for computation of fuzzy linear regression," European Journal of Operational Research, Elsevier, vol. 166(1), pages 172-184, October.
    3. Narula, Subhash C. & Wellington, John F., 2007. "Multiple criteria linear regression," European Journal of Operational Research, Elsevier, vol. 181(2), pages 767-772, September.
    4. Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
    5. Olafsson, Sigurdur & Li, Xiaonan & Wu, Shuning, 2008. "Operations research and data mining," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1429-1448, June.
    6. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    7. James W. Taylor, 2008. "A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center," Management Science, INFORMS, vol. 54(2), pages 253-265, February.
    8. Kao, Chiang & Chyu, Chin-Lu, 2003. "Least-squares estimates in fuzzy regression analysis," European Journal of Operational Research, Elsevier, vol. 148(2), pages 426-435, July.
    9. Hsu, Bi-Min & Shu, Ming-Hung, 2008. "Fuzzy inference to assess manufacturing process capability with imprecise data," European Journal of Operational Research, Elsevier, vol. 186(2), pages 652-670, April.
    10. Tanaka, Hideo & Guo, Peijun, 1999. "Portfolio selection based on upper and lower exponential possibility distributions," European Journal of Operational Research, Elsevier, vol. 114(1), pages 115-126, April.
    11. Aznar, Jeronimo & Guijarro, Francisco, 2007. "Estimating regression parameters with imprecise input data in an appraisal context," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1896-1907, February.
    12. Pekka Korhonen & Mikko Syrjänen, 2004. "Resource Allocation Based on Efficiency Analysis," Management Science, INFORMS, vol. 50(8), pages 1134-1144, August.
    13. He, Yan-Qun & Chan, Lai-Kow & Wu, Ming-Lu, 2007. "Balancing productivity and consumer satisfaction for profitability: Statistical and fuzzy regression analysis," European Journal of Operational Research, Elsevier, vol. 176(1), pages 252-263, January.
    14. Wu, Chien-Wei, 2009. "Decision-making in testing process performance with fuzzy data," European Journal of Operational Research, Elsevier, vol. 193(2), pages 499-509, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Ebbini, Lina & Oztekin, Asil & Chen, Yao, 2016. "FLAS: Fuzzy lung allocation system for US-based transplantations," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1051-1065.
    2. Attah-Boakye, Rexford & Adams, Kweku & Hernandez-Perdomo, Elvis & Yu, Honglan & Johansson, Jeaneth, 2023. "Resource re-orchestration and firm survival in crisis periods: The role of business models of technology MNEs during COVID-19," Technovation, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    2. Narula, Subhash C. & Wellington, John F. & Lewis, Stephen A., 2012. "Valuating residential real estate using parametric programming," European Journal of Operational Research, Elsevier, vol. 217(1), pages 120-128.
    3. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    4. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
    5. Iván E. Villalón-Turrubiates & Rogelio López-Herrera & Jorge L. García-Alcaraz & José R. Díaz-Reza & Arturo Soto-Cabral & Iván González-Lazalde & Gerardo Grijalva-Avila & José L. Rodríguez-Álvarez, 2022. "A Non-Invasive Method to Evaluate Fuzzy Process Capability Indices via Coupled Applications of Artificial Neural Networks and the Placket–Burman DOE," Mathematics, MDPI, vol. 10(16), pages 1-27, August.
    6. Taylor, James W., 2010. "Triple seasonal methods for short-term electricity demand forecasting," European Journal of Operational Research, Elsevier, vol. 204(1), pages 139-152, July.
    7. Mauro Bernardi & Lea Petrella, 2015. "Multiple seasonal cycles forecasting model: the Italian electricity demand," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 671-695, November.
    8. Pavel Škrabánek & Jaroslav Marek & Alena Pozdílková, 2021. "Boscovich Fuzzy Regression Line," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
    9. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    10. Taylor, James W. & Snyder, Ralph D., 2012. "Forecasting intraday time series with multiple seasonal cycles using parsimonious seasonal exponential smoothing," Omega, Elsevier, vol. 40(6), pages 748-757.
    11. Shafaei Bajestani, Narges & Vahidian Kamyad, Ali & Nasli Esfahani, Ensieh & Zare, Assef, 2018. "Prediction of retinopathy in diabetic patients using type-2 fuzzy regression model," European Journal of Operational Research, Elsevier, vol. 264(3), pages 859-869.
    12. Taylor, James W., 2010. "Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles," International Journal of Forecasting, Elsevier, vol. 26(4), pages 627-646, October.
    13. Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
    14. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    15. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    16. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    17. Ali Azadeh & Mohammad Sheikhalishahi & Ali Boostani, 2014. "A Flexible Neuro-Fuzzy Approach for Improvement of Seasonal Housing Price Estimation in Uncertain and Non-Linear Environments," South African Journal of Economics, Economic Society of South Africa, vol. 82(4), pages 567-582, December.
    18. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    19. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    20. Baumöhl, Eduard & Iwasaki, Ichiro & Kočenda, Evžen, 2019. "Institutions and determinants of firm survival in European emerging markets," Journal of Corporate Finance, Elsevier, vol. 58(C), pages 431-453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:210:y:2011:i:3:p:606-617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.