IDEAS home Printed from https://ideas.repec.org/p/hhs/nhhfms/2016_022.html
   My bibliography  Save this paper

Non-parametric estimation of conditional densities: A new method

Author

Listed:
  • Otneim, Håkon

    (Dept. of Business and Management Science, Norwegian School of Economics)

  • Tjøstheim, Dag

    (Dept. of Mathematics, University of Bergen)

Abstract

Let X = (X1,...,Xp) be a stochastic vector having joint density function fX(x) with partitions X1 = (X1,...,Xk) and X2 = (Xk+1,...,Xp). A new method for estimating the conditional density function of X1 given X2 is presented. It is based on locally Gaussian approximations, but simplified in order to tackle the curse of dimensionality in multivariate applications, where both response and explanatory variables can be vectors. We compare our method to some available competitors, and the error of approximation is shown to be small in a series of examples using real and simulated data, and the estimator is shown to be particularly robust against noise caused by independent variables. We also present examples of practical applications of our conditional density estimator in the analysis of time series. Typical values for k in our examples are 1 and 2, and we include simulation experiments with values of p up to 6. Large sample theory is established under a strong mixing condition.

Suggested Citation

  • Otneim, Håkon & Tjøstheim, Dag, 2016. "Non-parametric estimation of conditional densities: A new method," Discussion Papers 2016/22, Norwegian School of Economics, Department of Business and Management Science.
  • Handle: RePEc:hhs:nhhfms:2016_022
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11250/2424564
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, R.J. & Yao, Q., 1998. "Nonparametric Estimation and Symmetry Tests for Conditional Density Functions," Monash Econometrics and Business Statistics Working Papers 17/98, Monash University, Department of Econometrics and Business Statistics.
    2. Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
    3. Jianqing Fan & Tsz Ho Yim, 2004. "A crossvalidation method for estimating conditional densities," Biometrika, Biometrika Trust, vol. 91(4), pages 819-834, December.
    4. Peligrad, Magda, 1992. "On the central limit theorem for weakly dependent sequences with a decomposed strong mixing coefficient," Stochastic Processes and their Applications, Elsevier, vol. 42(2), pages 181-193, September.
    5. J. Chacón & T. Duong, 2010. "Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 375-398, August.
    6. Irle, A., 1997. "On Consistency in Nonparametric Estimation under Mixing Conditions," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 123-147, January.
    7. Tjøstheim, Dag & Hufthammer, Karl Ove, 2013. "Local Gaussian correlation: A new measure of dependence," Journal of Econometrics, Elsevier, vol. 172(1), pages 33-48.
    8. Bashtannyk, David M. & Hyndman, Rob J., 2001. "Bandwidth selection for kernel conditional density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 36(3), pages 279-298, May.
    9. Gery Geenens & Arthur Charpentier & Davy Paindaveine, 2014. "Probit Transformation for Nonparametric Kernel Estimation of the Copula Density," Working Papers ECARES ECARES 2014-23, ULB -- Universite Libre de Bruxelles.
    10. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
    11. Bücher, Axel & Volgushev, Stanislav, 2013. "Empirical and sequential empirical copula processes under serial dependence," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 61-70.
    12. Xiaohong Chen & Oliver Linton & Peter M Robinson, 2001. "The Estimation of Conditional Densities," STICERD - Econometrics Paper Series 415, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Fan, Jianqing & Yao, Qiwei & Tong, Howell, 1996. "Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems," LSE Research Online Documents on Economics 6704, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Han-Ying & Peng, Liang, 2010. "Asymptotic normality and Berry-Esseen results for conditional density estimator with censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1043-1054, May.
    2. Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
    3. Kateřina Konečná & Ivanka Horová, 2019. "Maximum likelihood method for bandwidth selection in kernel conditional density estimate," Computational Statistics, Springer, vol. 34(4), pages 1871-1887, December.
    4. Wen, Kuangyu & Wu, Ximing, 2017. "Smoothed kernel conditional density estimation," Economics Letters, Elsevier, vol. 152(C), pages 112-116.
    5. Liang, Han-Ying & Liu, Ai-Ai, 2013. "Kernel estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 40-58.
    6. Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
    7. Ann-Kathrin Bott & Michael Kohler, 2016. "Adaptive Estimation of a Conditional Density," International Statistical Review, International Statistical Institute, vol. 84(2), pages 291-316, August.
    8. Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
    9. Jooyoung Jeon & James W. Taylor, 2012. "Using Conditional Kernel Density Estimation for Wind Power Density Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 66-79, March.
    10. Roberto Basile, 2010. "Intra-distribution dynamics of regional per-capita income in Europe: evidence from alternative conditional density estimators," Statistica, Department of Statistics, University of Bologna, vol. 70(1), pages 3-22.
    11. Roberto Basile, 2009. "Productivity Polarization across Regions in Europe," International Regional Science Review, , vol. 32(1), pages 92-115, January.
    12. Manfred Fischer & Peter Stumpner, 2008. "Income distribution dynamics and cross-region convergence in Europe," Journal of Geographical Systems, Springer, vol. 10(2), pages 109-139, June.
    13. Janssen, Paul & Swanepoel, Jan & Veraverbeke, Noël, 2017. "Smooth copula-based estimation of the conditional density function with a single covariate," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 39-48.
    14. Ichimura, Tsuyoshi & Fukuda, Daisuke, 2010. "A fast algorithm for computing least-squares cross-validations for nonparametric conditional kernel density functions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3404-3410, December.
    15. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    16. Chopin, Nicolas & Gadat, Sébastien & Guedj, Benjamin & Guyader, Arnaud & Vernet, Elodie, 2015. "On some recent advances in high dimensional Bayesian Statistics," TSE Working Papers 15-557, Toulouse School of Economics (TSE).
    17. Holmes, Michael P. & Gray, Alexander G. & Isbell Jr., Charles Lee, 2010. "Fast kernel conditional density estimation: A dual-tree Monte Carlo approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1707-1718, July.
    18. Tang, Yongqiang & Ghosal, Subhashis, 2007. "A consistent nonparametric Bayesian procedure for estimating autoregressive conditional densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4424-4437, May.
    19. Wang, Xiao-Feng & Ye, Deping, 2015. "Conditional density estimation in measurement error problems," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 38-50.
    20. Obbey Elamin & Len Gill & Martyn Andrews, 2020. "Insights from kernel conditional-probability estimates into female labour force participation decision in the UK," Empirical Economics, Springer, vol. 58(6), pages 2981-3006, June.

    More about this item

    Keywords

    Conditional density estimation; local likelihood; multivariate data; crossvalidation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:nhhfms:2016_022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stein Fossen (email available below). General contact details of provider: https://edirc.repec.org/data/dfnhhno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.