IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v41y2019i43.html
   My bibliography  Save this article

The impact of the choice of life table statistics when forecasting mortality

Author

Listed:
  • Marie-Pier Bergeron-Boucher

    (Syddansk Universitet)

  • Søren Kjærgaard

    (Syddansk Universitet)

  • James E. Oeppen

    (Syddansk Universitet)

  • James W. Vaupel

    (Syddansk Universitet)

Abstract

Background: Different ways to forecast mortality have been suggested, with many forecasting models based on the extrapolation of age-specific death rates. Recent studies, however, have looked into forecasting models based on other mortality indicators, such as life expectancy or life table deaths. Objective: Here we ask, what are the implications of choosing one indicator over another to forecast mortality? Methods: We compare five extrapolative models based on different life table statistics: death rates, death probabilities, survival probabilities, life table deaths, and life expectancy at birth. We show the consequences of using a specific indicator for the forecast results by looking into time changes in the indicators produced by the models. Results: The results show that forecasting based on death rates and probabilities of death leads to more pessimistic forecasts than using survival probabilities, life table deaths, and life expectancy when applying existing models based on linear extrapolation of (transformed) indicators. Contribution: The paper raises awareness that the use of a specific life table statistic as input for mortality forecasting has a significant impact on the forecast results.

Suggested Citation

  • Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
  • Handle: RePEc:dem:demres:v:41:y:2019:i:43
    DOI: 10.4054/DemRes.2019.41.43
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol41/43/41-43.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2019.41.43?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    2. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    3. Søren Kjærgaard & Yunus Emre Ergemen & Malene Kallestrup‐Lamb & Jim Oeppen & Rune Lindahl‐Jacobsen, 2019. "Forecasting causes of death by using compositional data analysis: the case of cancer deaths," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(5), pages 1351-1370, November.
    4. Mauro Bernardi & Leopoldo Catania, 2014. "The Model Confidence Set package for R," Papers 1410.8504, arXiv.org.
    5. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    6. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    7. Jong, Piet De & Marshall, Claymore, 2007. "Mortality Projection Based on the Wang Transform," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 149-161, May.
    8. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    9. Søren Kjærgaard & Yunus Emre Ergemen & Malene Kallestrup-Lamb & Jim Oeppen & Rune Lindahl-Jacobsen, 2019. "Forecasting Causes of Death using Compositional Data Analysis: the Case of Cancer Deaths," CREATES Research Papers 2019-07, Department of Economics and Business Economics, Aarhus University.
    10. Adrian E. Raftery & Nevena Lalic & Patrick Gerland, 2014. "Joint probabilistic projection of female and male life expectancy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(27), pages 795-822.
    11. Sergei Scherbov & Dalkhat Ediev, 2016. "Does selection of mortality model make a difference in projecting population ageing?," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(2), pages 39-62.
    12. Sweeting, P. J., 2011. "A Trend-Change Extension of the Cairns-Blake-Dowd Model," Annals of Actuarial Science, Cambridge University Press, vol. 5(2), pages 143-162, September.
    13. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    14. Pascariu, Marius D. & Canudas-Romo, Vladimir & Vaupel, James W., 2018. "The double-gap life expectancy forecasting model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 339-350.
    15. Fanny Janssen & Leo Wissen & Anton Kunst, 2013. "Including the Smoking Epidemic in Internationally Coherent Mortality Projections," Demography, Springer;Population Association of America (PAA), vol. 50(4), pages 1341-1362, August.
    16. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    17. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    18. Ugofilippo Basellini & Carlo Giovanni Camarda, 2019. "Modelling and forecasting adult age-at-death distributions," Population Studies, Taylor & Francis Journals, vol. 73(1), pages 119-138, January.
    19. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    20. Marie-Pier Bergeron-Boucher & Violetta Simonacci & Jim Oeppen & Michele Gallo, 2018. "Coherent Modeling and Forecasting of Mortality Patterns for Subpopulations Using Multiway Analysis of Compositions: An Application to Canadian Provinces and Territories," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(1), pages 92-118, January.
    21. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    22. Torri, Tiziana & Vaupel, James W., 2012. "Forecasting life expectancy in an international context," International Journal of Forecasting, Elsevier, vol. 28(2), pages 519-531.
    23. Samir Soneji & Gary King, 2011. "The future of death in America," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(1), pages 1-38.
    24. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
    25. Li, Han & O’Hare, Colin & Zhang, Xibin, 2015. "A semiparametric panel approach to mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 264-270.
    26. Debón, A. & Montes, F. & Puig, F., 2008. "Modelling and forecasting mortality in Spain," European Journal of Operational Research, Elsevier, vol. 189(3), pages 624-637, September.
    27. Hatzopoulos, P. & Haberman, S., 2013. "Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 320-337.
    28. Ronald Lee, 2000. "The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(1), pages 80-91.
    29. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    30. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    31. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    32. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    33. Nan Li & Ronald Lee & Patrick Gerland, 2013. "Extending the Lee-Carter Method to Model the Rotation of Age Patterns of Mortality Decline for Long-Term Projections," Demography, Springer;Population Association of America (PAA), vol. 50(6), pages 2037-2051, December.
    34. Haberman, Steven & Renshaw, Arthur, 2012. "Parametric mortality improvement rate modelling and projecting," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 309-333.
    35. James Vaupel & Anatoli Yashin, 1987. "Repeated resuscitation: How lifesaving alters life tables," Demography, Springer;Population Association of America (PAA), vol. 24(1), pages 123-135, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bergeron-Boucher, Marie-Pier & Kjærgaard, Søren, 2022. "Mortality forecasts by age and cause of death: How to forecast both dimensions?," SocArXiv d7hbp, Center for Open Science.
    2. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    3. Bergeron-Boucher, Marie-Pier & Vázquez-Castillo, Paola & Missov, Trifon, 2022. "A modal age at death approach to forecasting mortality," SocArXiv 5zr2k, Center for Open Science.
    4. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    2. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    3. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    4. Rizzi, Silvia & Kjærgaard, Søren & Bergeron Boucher, Marie-Pier & Camarda, Carlo Giovanni & Lindahl-Jacobsen, Rune & Vaupel, James W., 2021. "Killing off cohorts: Forecasting mortality of non-extinct cohorts with the penalized composite link model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 95-104.
    5. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    6. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    7. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    8. Søren Kjærgaard & Yunus Emre Ergemen & Marie-Pier Bergeron Boucher & Jim Oeppen & Malene Kallestrup-Lamb, 2019. "Longevity forecasting by socio-economic groups using compositional data analysis," CREATES Research Papers 2019-08, Department of Economics and Business Economics, Aarhus University.
    9. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    10. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    11. Ricarda Duerst & Jonas Schöley & Christina Bohk-Ewald, 2023. "A validation workflow for mortality forecasting," MPIDR Working Papers WP-2023-020, Max Planck Institute for Demographic Research, Rostock, Germany.
    12. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    13. Bergeron-Boucher, Marie-Pier & Vázquez-Castillo, Paola & Missov, Trifon, 2022. "A modal age at death approach to forecasting mortality," SocArXiv 5zr2k, Center for Open Science.
    14. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    15. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    16. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    17. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    18. Rachel WINGENBACH & Jong-Min KIM & Hojin JUNG, 2020. "Living Longer in High Longevity Risk," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 86(1), pages 47-86, March.
    19. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    20. Li, Han & O’Hare, Colin, 2017. "Semi-parametric extensions of the Cairns–Blake–Dowd model: A one-dimensional kernel smoothing approach," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 166-176.

    More about this item

    Keywords

    mortality forecasts; life table; life expectancy; rate of mortality improvement;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:41:y:2019:i:43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.