IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v113y2017icp424-440.html
   My bibliography  Save this article

Robust estimators under a functional common principal components model

Author

Listed:
  • Bali, Juan Lucas
  • Boente, Graciela

Abstract

When dealing with several populations of functional data, equality of the covariance operators is often assumed even when seeking for a lower-dimensional approximation to the data. Usually, if this assumption does not hold, one estimates the covariance operator of each group separately, which leads to a large number of parameters. As in the multivariate setting, this is not satisfactory since the covariance operators may exhibit some common structure, as is, for instance, the assumption of common principal directions. The existing procedures to estimate the common directions are sensitive to atypical observations. For that reason, robust projection-pursuit estimators for the common directions under a common principal component model are considered. A numerical method to compute the first directions is also provided. Under mild conditions, consistency results are obtained. A Monte Carlo study is performed to compare the finite sample behaviour of the estimators based on robust scales and on the standard deviation. The usefulness of the proposed approach is illustrated on a real data set.

Suggested Citation

  • Bali, Juan Lucas & Boente, Graciela, 2017. "Robust estimators under a functional common principal components model," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 424-440.
  • Handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:424-440
    DOI: 10.1016/j.csda.2016.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316302080
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    2. N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
    3. Lee, Seokho & Shin, Hyejin & Billor, Nedret, 2013. "M-type smoothing spline estimators for principal functions," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 89-100.
    4. Daniel Gervini, 2008. "Robust functional estimation using the median and spherical principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 587-600.
    5. Croux, Christophe & Joossens, Kristel, 2005. "Influence of observations on the misclassification probability in quadratic discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 384-403, October.
    6. Detlefsen, Kai & Härdle, Wolfgang Karl, 2005. "Common functional implied volatility analysis," SFB 649 Discussion Papers 2005-012, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. David Kraus & Victor M. Panaretos, 2012. "Dispersion operators and resistant second-order functional data analysis," Biometrika, Biometrika Trust, vol. 99(4), pages 813-832.
    8. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2010. "Inference under functional proportional and common principal component models," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 464-475, February.
    9. Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
    10. Norm A. Campbell, 1978. "The Influence Function as an Aid in Outlier Detection in Discriminant Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 27(3), pages 251-258, November.
    11. Hengjian Cui, 2003. "Asymptotic distributions of principal components based on robust dispersions," Biometrika, Biometrika Trust, vol. 90(4), pages 953-966, December.
    12. Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
    13. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    14. Pallavi Sawant & Nedret Billor & Hyejin Shin, 2012. "Functional outlier detection with robust functional principal component analysis," Computational Statistics, Springer, vol. 27(1), pages 83-102, March.
    15. Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2006. "General projection-pursuit estimators for the common principal components model: influence functions and Monte Carlo study," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 124-147, January.
    16. Boente, Graciela & Salibián Barrera, Matías & Tyler, David E., 2014. "A characterization of elliptical distributions and some optimality properties of principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 254-264.
    17. Pires, Ana M. & Branco, João A., 2010. "Projection-pursuit approach to robust linear discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2464-2485, November.
    18. Hubert, Mia & Van Driessen, Katrien, 2004. "Fast and robust discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 301-320, March.
    19. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    20. Croux, Christophe & Ruiz-Gazen, Anne, 2005. "High breakdown estimators for principal components: the projection-pursuit approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 206-226, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
    2. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    3. Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
    4. Graciela Boente & Matías Salibián-Barrera, 2021. "Robust functional principal components for sparse longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 159-188, August.
    5. Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
    6. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    7. Lee, Seokho & Shin, Hyejin & Billor, Nedret, 2013. "M-type smoothing spline estimators for principal functions," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 89-100.
    8. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    9. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    10. Hervé Cardot & Antoine Godichon-Baggioni, 2017. "Fast estimation of the median covariation matrix with application to online robust principal components analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 461-480, September.
    11. Haolun Shi & Jiguo Cao, 2022. "Robust Functional Principal Component Analysis Based on a New Regression Framework," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 523-543, September.
    12. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "Robust simultaneous inference for the mean function of functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 785-803, September.
    13. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "M-based simultaneous inference for the mean function of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 577-598, June.
    14. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    15. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    16. Martínez-Hernández, Israel & Genton, Marc G. & González-Farías, Graciela, 2019. "Robust depth-based estimation of the functional autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 66-79.
    17. Bianco, Ana & Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2008. "Robust discrimination under a hierarchy on the scatter matrices," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1332-1357, July.
    18. Boente, Graciela & Molina, Julieta & Sued, Mariela, 2010. "On the asymptotic behavior of general projection-pursuit estimators under the common principal components model," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 228-235, February.
    19. Debruyne, Michiel & Hubert, Mia & Van Horebeek, Johan, 2010. "Detecting influential observations in Kernel PCA," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3007-3019, December.
    20. Todorov, Valentin & Filzmoser, Peter, 2009. "An Object-Oriented Framework for Robust Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i03).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:424-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.