IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224033553.html
   My bibliography  Save this article

Very short-term wind power forecasting considering static data: An improved transformer model

Author

Listed:
  • Wang, Sen
  • Sun, Yonghui
  • Zhang, Wenjie
  • Chung, C.Y.
  • Srinivasan, Dipti

Abstract

The randomness and fluctuations in wind power generation present significant challenges for grid and wind farm dispatching. Accurate very short-term wind power forecasting (WPF) is therefore essential for the efficient operation of modern power systems. Data-driven models, such as Transformers, have demonstrated their effectiveness in WPF due to their ability to efficiently capture global features in long sequences. However, limited research has examined the impact of incorporating static data into WPF, which may limit forecasting accuracy. This paper proposes a Temporal Fusion Transformer forecasting model to address this challenge. This approach employs static data as the input features for the model. The model includes feature selection through a variable selection network and employs a specialized temporal fusion decoder to learn effectively from these static features. The case results show that the results of the proposed model are more accurate than the state-of-the-art methods, reducing MAPE by at least 1.32%, RMSE by 0.0091, and improving R2 by 0.035 in case studies. Additionally, the model maintains a manageable computational burden, underscoring its practical applicability.

Suggested Citation

  • Wang, Sen & Sun, Yonghui & Zhang, Wenjie & Chung, C.Y. & Srinivasan, Dipti, 2024. "Very short-term wind power forecasting considering static data: An improved transformer model," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033553
    DOI: 10.1016/j.energy.2024.133577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033553
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Sen & Zhang, Wenjie & Sun, Yonghui & Trivedi, Anupam & Chung, C.Y. & Srinivasan, Dipti, 2024. "Wind Power Forecasting in the presence of data scarcity: A very short-term conditional probabilistic modeling framework," Energy, Elsevier, vol. 291(C).
    2. Dai, Xiaoran & Liu, Guo-Ping & Hu, Wenshan, 2023. "An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting," Energy, Elsevier, vol. 272(C).
    3. Wang, Fei & Chen, Peng & Zhen, Zhao & Yin, Rui & Cao, Chunmei & Zhang, Yagang & Duić, Neven, 2022. "Dynamic spatio-temporal correlation and hierarchical directed graph structure based ultra-short-term wind farm cluster power forecasting method," Applied Energy, Elsevier, vol. 323(C).
    4. Leng, Chunyang & Jia, Mingxing & Zheng, Haijin & Deng, Jibin & Niu, Dapeng, 2023. "Dynamic liquid level prediction in oil wells during oil extraction based on WOA-AM-LSTM-ANN model using dynamic and static information," Energy, Elsevier, vol. 282(C).
    5. Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Gong, Mingju & Yan, Changcheng & Xu, Wei & Zhao, Zhixuan & Li, Wenxiang & Liu, Yan & Li, Sheng, 2023. "Short-term wind power forecasting model based on temporal convolutional network and Informer," Energy, Elsevier, vol. 283(C).
    7. Couto, António & Estanqueiro, Ana, 2022. "Enhancing wind power forecast accuracy using the weather research and forecasting numerical model-based features and artificial neuronal networks," Renewable Energy, Elsevier, vol. 201(P1), pages 1076-1085.
    8. Higgins, P. & Foley, A.M. & Douglas, R. & Li, K., 2014. "Impact of offshore wind power forecast error in a carbon constraint electricity market," Energy, Elsevier, vol. 76(C), pages 187-197.
    9. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    10. Kaur, Amanpreet & Nonnenmacher, Lukas & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2016. "Benefits of solar forecasting for energy imbalance markets," Renewable Energy, Elsevier, vol. 86(C), pages 819-830.
    11. Liu, Hong & Yang, Luoxiao & Zhang, Bingying & Zhang, Zijun, 2023. "A two-channel deep network based model for improving ultra-short-term prediction of wind power via utilizing multi-source data," Energy, Elsevier, vol. 283(C).
    12. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    13. Wang, Fei & Tong, Shuang & Sun, Yiqian & Xie, Yongsheng & Zhen, Zhao & Li, Guoqing & Cao, Chunmei & Duić, Neven & Liu, Dagui, 2022. "Wind process pattern forecasting based ultra-short-term wind speed hybrid prediction," Energy, Elsevier, vol. 255(C).
    14. Hu, Shuai & Xiang, Yue & Zhang, Hongcai & Xie, Shanyi & Li, Jianhua & Gu, Chenghong & Sun, Wei & Liu, Junyong, 2021. "Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction," Applied Energy, Elsevier, vol. 293(C).
    15. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    16. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    17. Neves, Diana & Brito, Miguel C. & Silva, Carlos A., 2016. "Impact of solar and wind forecast uncertainties on demand response of isolated microgrids," Renewable Energy, Elsevier, vol. 87(P2), pages 1003-1015.
    18. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    19. Wu, Binrong & Wang, Lin, 2024. "Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting," Energy, Elsevier, vol. 288(C).
    20. Khazaei, Sahra & Ehsan, Mehdi & Soleymani, Soodabeh & Mohammadnezhad-Shourkaei, Hosein, 2022. "A high-accuracy hybrid method for short-term wind power forecasting," Energy, Elsevier, vol. 238(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    2. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    3. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Cheng, Runkun & Yang, Di & Liu, Da & Zhang, Guowei, 2024. "A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting," Energy, Elsevier, vol. 308(C).
    5. Chen, Juntao & Fu, Xueying & Zhang, Lingli & Shen, Haoye & Wu, Jibo, 2024. "A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms," Energy, Elsevier, vol. 308(C).
    6. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    7. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    8. Chen, Yuejiang & Xiao, Jiang-Wen & Wang, Yan-Wu & Luo, Yunfeng, 2025. "Non-crossing quantile probabilistic forecasting of cluster wind power considering spatio-temporal correlation," Applied Energy, Elsevier, vol. 377(PA).
    9. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    10. Dai, Xiaoran & Liu, Guo-Ping & Hu, Wenshan, 2023. "An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting," Energy, Elsevier, vol. 272(C).
    11. Hou, Guolian & Wang, Junjie & Fan, Yuzhen & Zhang, Jianhua & Huang, Congzhi, 2024. "A novel wind power deterministic and interval prediction framework based on the critic weight method, improved northern goshawk optimization, and kernel density estimation," Renewable Energy, Elsevier, vol. 226(C).
    12. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    13. Zhao, Yongning & Pan, Shiji & Zhao, Yuan & Liao, Haohan & Ye, Lin & Zheng, Yingying, 2024. "Ultra-short-term wind power forecasting based on personalized robust federated learning with spatial collaboration," Energy, Elsevier, vol. 288(C).
    14. Zhao, Beizhen & He, Xin & Ran, Shaolin & Zhang, Yong & Cheng, Cheng, 2024. "Spatial correlation learning based on graph neural network for medium-term wind power forecasting," Energy, Elsevier, vol. 296(C).
    15. Niu, Zhewen & Han, Xiaoqing & Zhang, Dongxia & Wu, Yuxiang & Lan, Songyan, 2024. "Interpretable wind power forecasting combining seasonal-trend representations learning with temporal fusion transformers architecture," Energy, Elsevier, vol. 306(C).
    16. Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
    17. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    18. Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
    19. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    20. Cheng, Fang & Liu, Hui, 2024. "Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks," Applied Energy, Elsevier, vol. 376(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.