IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v60y2019i6d10.1007_s00362-017-0915-7.html
   My bibliography  Save this article

Minimum distance estimation of the binormal ROC curve

Author

Listed:
  • Alicja Jokiel-Rokita

    (Wroclaw University of Science and Technology)

  • Rafał Topolnicki

    (Wroclaw University of Science and Technology)

Abstract

The receiver operating characteristic (ROC) curve describes the performance of a diagnostic test, which classifies individuals into one of two categories. Many parametric, semiparametric and nonparametric estimation methods have been proposed for estimating the ROC curve and its functionals. In this paper the minimum distance estimation of the binormal ROC curve is considered. A modification of the estimator considered in the paper of Davidov and Nov (J Stat Plan Inference 142(4):872–877, 2012) and some new estimators are proposed. We compare the accuracy of the new estimators with known minimum distance estimators of the binormal ROC curve and we conclude that our estimators generally perform better than their competitors.

Suggested Citation

  • Alicja Jokiel-Rokita & Rafał Topolnicki, 2019. "Minimum distance estimation of the binormal ROC curve," Statistical Papers, Springer, vol. 60(6), pages 2161-2183, December.
  • Handle: RePEc:spr:stpapr:v:60:y:2019:i:6:d:10.1007_s00362-017-0915-7
    DOI: 10.1007/s00362-017-0915-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-017-0915-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-017-0915-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Peter G. & Hyndman, Rob J., 2003. "Improved methods for bandwidth selection when estimating ROC curves," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 181-189, August.
    2. Kelly Zou & W. J. Hall, 2000. "Two transformation models for estimating an ROC curve derived from continuous data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 621-631.
    3. Lloyd, Chris J. & Yong, Zhou, 1999. "Kernel estimators of the ROC curve are better than empirical," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 221-228, September.
    4. Lloyd, Chris J., 2002. "Estimation of a convex ROC curve," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 99-111, August.
    5. Jiezhun Gu & Subhashis Ghosal, 2008. "Strong approximations for resample quantile processes and application to ROC methodology," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(3), pages 229-240.
    6. Jing Qin, 2003. "Using logistic regression procedures for estimating receiver operating characteristic curves," Biometrika, Biometrika Trust, vol. 90(3), pages 585-596, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Judith H. Parkinson-Schwarz & Arne C. Bathke, 2022. "Testing for equality of distributions using the concept of (niche) overlap," Statistical Papers, Springer, vol. 63(1), pages 225-242, February.
    2. Błażej Kochański, 2022. "Which Curve Fits Best: Fitting ROC Curve Models to Empirical Credit-Scoring Data," Risks, MDPI, vol. 10(10), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rufibach Kaspar, 2012. "A Smooth ROC Curve Estimator Based on Log-Concave Density Estimates," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-29, April.
    2. Cheam, Amay S.M. & McNicholas, Paul D., 2016. "Modelling receiver operating characteristic curves using Gaussian mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 192-208.
    3. Zhang, Biao, 2006. "A semiparametric hypothesis testing procedure for the ROC curve area under a density ratio model," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1855-1876, April.
    4. Kang, Le & Tian, Lili, 2013. "Estimation of the volume under the ROC surface with three ordinal diagnostic categories," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 39-51.
    5. Elisa–María Molanes-López & Ricardo Cao, 2008. "Relative density estimation for left truncated and right censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 693-720.
    6. Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
    7. Yousef, Waleed A. & Kundu, Subrata & Wagner, Robert F., 2009. "Nonparametric estimation of the threshold at an operating point on the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4370-4383, October.
    8. Chen, Xiwei & Vexler, Albert & Markatou, Marianthi, 2015. "Empirical likelihood ratio confidence interval estimation of best linear combinations of biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 186-198.
    9. Lloyd, Chris J., 2002. "Estimation of a convex ROC curve," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 99-111, August.
    10. Zhongkai Liu & Howard D. Bondell, 2019. "Binormal Precision–Recall Curves for Optimal Classification of Imbalanced Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 141-161, April.
    11. Douglas Mossman & Hongying Peng, 2016. "Using Dual Beta Distributions to Create “Proper†ROC Curves Based on Rating Category Data," Medical Decision Making, , vol. 36(3), pages 349-365, April.
    12. Hall, Peter G. & Hyndman, Rob J., 2003. "Improved methods for bandwidth selection when estimating ROC curves," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 181-189, August.
    13. B Rey deCastro, 2019. "Cumulative ROC curves for discriminating three or more ordinal outcomes with cutpoints on a shared continuous measurement scale," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-16, August.
    14. Wang, Suohong & Zhang, Biao, 2014. "Semiparametric empirical likelihood confidence intervals for AUC under a density ratio model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 101-115.
    15. Yang, Hanfang & Zhao, Yichuan, 2013. "Smoothed jackknife empirical likelihood inference for the difference of ROC curves," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 270-284.
    16. Yang, Hanfang & Zhao, Yichuan, 2012. "Smoothed empirical likelihood for ROC curves with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 254-263.
    17. Yang, Hanfang & Zhao, Yichuan, 2015. "Smoothed jackknife empirical likelihood inference for ROC curves with missing data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 123-138.
    18. Wan, Shuwen & Zhang, Biao, 2008. "Comparing correlated ROC curves for continuous diagnostic tests under density ratio models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 233-245, September.
    19. Yin, Jingjing & Tian, Lili, 2014. "Joint inference about sensitivity and specificity at the optimal cut-off point associated with Youden index," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 1-13.
    20. Alba M. Franco-Pereira & Christos T. Nakas & M. Carmen Pardo, 2020. "Biomarker assessment in ROC curve analysis using the length of the curve as an index of diagnostic accuracy: the binormal model framework," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 625-647, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:60:y:2019:i:6:d:10.1007_s00362-017-0915-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.