IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2010-9.html
   My bibliography  Save this paper

Forecasting age-related changes in breast cancer mortality among white and black US women: A functional approach

Author

Listed:
  • Farah Yasmeen
  • Rob J Hyndman
  • Bircan Erbas

Abstract

The disparity in breast cancer mortality rates among white and black US women is widening with higher mortality rates among black women. We apply functional time series models on age-specific breast cancer mortality rates for each group of women, and forecast their mortality curves using exponential smoothing state-space models with damping. The data were obtained from the Surveillance, Epidemiology and End Results (SEER) program of the US (SEER, 2007). Mortality data were obtained from the National Centre for Health Statistics (NCHS) available on the SEER*Stat database. We use annual unadjusted breast cancer mortality rates from 1969 to 2004 in 5-year age groups (45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84). Age-specific mortality curves were obtained using nonparametric smoothing methods. The curves are then decomposed using functional principal components and we fit functional time series models with four basis functions for each population separately. The curves from each population are forecast and prediction intervals are calculated. Twenty-year forecasts indicate an over-all decline in future breast cancer mortality rates for both groups of women. This decline is steeper among white women aged 55-73 and black women aged 60-84. For black women under 55 years of age, the forecast rates are relatively stable indicating no significant change in future breast cancer mortality rates among young black women in the next 20 years.

Suggested Citation

  • Farah Yasmeen & Rob J Hyndman & Bircan Erbas, 2010. "Forecasting age-related changes in breast cancer mortality among white and black US women: A functional approach," Monash Econometrics and Business Statistics Working Papers 9/10, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2010-9
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2010/wp9-10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marbella, A.M. & Layde, P.M., 2001. "Racial trends in age-specific breast cancer mortality rates in US women," American Journal of Public Health, American Public Health Association, vol. 91(1), pages 118-121.
    2. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    3. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, November.
    4. Rob J. Hyndman & Han Lin Shang, 2008. "Rainbow plots, Bagplots and Boxplots for Functional Data," Monash Econometrics and Business Statistics Working Papers 9/08, Monash University, Department of Econometrics and Business Statistics.
    5. Chevarley, F. & White, E., 1997. "Recent trends in breast cancer mortality among White and Black US women," American Journal of Public Health, American Public Health Association, vol. 87(5), pages 775-781.
    6. Makuc, D.M. & Freid, V.M. & Kleinman, J.C., 1989. "National trends in the use of preventive health care by women," American Journal of Public Health, American Public Health Association, vol. 79(1), pages 21-26.
    7. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, November.
    8. Farley, T.A. & Flannery, J.T., 1989. "Late-stage diagnosis of breast cancer in women of lower socioeconomic status: Public health implications," American Journal of Public Health, American Public Health Association, vol. 79(11), pages 1508-1512.
    9. Bircan Erbas & Rob J. Hyndman & Dorota M. Gertig, 2005. "Forecasting age-specific breast cancer mortality using functional data models," Monash Econometrics and Business Statistics Working Papers 3/05, Monash University, Department of Econometrics and Business Statistics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
    2. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    3. Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
    4. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    5. Naschold, Felix, 2012. "“The Poor Stay Poor”: Household Asset Poverty Traps in Rural Semi-Arid India," World Development, Elsevier, vol. 40(10), pages 2033-2043.
    6. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    7. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    8. Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
    9. Wei Huang & Oliver Linton & Zheng Zhang, 2022. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1817-1830, October.
    10. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    11. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    12. Kuhlenkasper, Torben & Kauermann, Göran, 2010. "Female wage profiles: An additive mixed model approach to employment breaks due to childcare," HWWI Research Papers 2-18, Hamburg Institute of International Economics (HWWI).
    13. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    14. Christian Schluter & Jackline Wahba, 2012. "Abstract: Illegal Migration, Wages, and Remittances: Semi-Parametric Estimation of Illegality Effects," Norface Discussion Paper Series 2012037, Norface Research Programme on Migration, Department of Economics, University College London.
    15. Zi Ye & Giles Hooker & Stephen P. Ellner, 2021. "Generalized Single Index Models and Jensen Effects on Reproduction and Survival," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 492-512, September.
    16. Esra Kürüm & Danh V. Nguyen & Qi Qian & Sudipto Banerjee & Connie M. Rhee & Damla Şentürk, 2024. "Spatiotemporal multilevel joint modeling of longitudinal and survival outcomes in end-stage kidney disease," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 827-852, October.
    17. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    19. Blöchl, Andreas, 2014. "Trend Estimation with Penalized Splines as Mixed Models for Series with Structural Breaks," Discussion Papers in Economics 18446, University of Munich, Department of Economics.
    20. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.

    More about this item

    Keywords

    Breast cancer mortality; racial and ethnic disparities; screening; trends; forecasting; functional data analysis;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2010-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.