IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v82y2020ics0969699719301711.html
   My bibliography  Save this article

SARIMA damp trend grey forecasting model for airline industry

Author

Listed:
  • Carmona-Benítez, Rafael Bernardo
  • Nieto, María Rosa

Abstract

The aim of this paper is to propose a new model that improves the Damp Trend Grey Model (DTGM) with a dynamic seasonal damping factor to forecast routes passengers demand (pax) in the air transportation industry. The model is called the SARIMA Damp Trend Grey Forecasting Model (SDTGM). In the DTGM, the damp trend factor is a static smoothing factor because it does not change over time, and therefore, it cannot capture the dynamic behavior of time series data. For this reason, the modification consists in using the trend and seasonality effects of time series data to calculate a dynamic damp trend factor as time grows. The DTGM damping factor is based on the forecasted data obtained by the GM(1,1) model; otherwise, the SDTGM calculates a seasonal damping factor based on historical data using a large amount of data points for short lead-times. The SDTGM has less uncertainty than the DTGM. The simulation results show that the SDTGM captures the seasonality effect and does not allow the forecast to exponentially grow. The SDTGM forecasts more reasonable routes pax for short lead-times when having a large amount of data points than the DTGM. The United States domestic air transport market data are used to compare the performance of the DTGM against the proposed SDTGM.

Suggested Citation

  • Carmona-Benítez, Rafael Bernardo & Nieto, María Rosa, 2020. "SARIMA damp trend grey forecasting model for airline industry," Journal of Air Transport Management, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:jaitra:v:82:y:2020:i:c:s0969699719301711
    DOI: 10.1016/j.jairtraman.2019.101736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699719301711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2019.101736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.
    2. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
    3. Zheng-Xin Wang, 2015. "A Predictive Analysis of Clean Energy Consumption, Economic Growth and Environmental Regulation in China Using an Optimized Grey Dynamic Model," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 437-453, October.
    4. Gelhausen, Marc C. & Berster, Peter & Wilken, Dieter, 2018. "A new direct demand model of long-term forecasting air passengers and air transport movements at German airports," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 140-152.
    5. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    6. Sun, Shaolong & Lu, Hongxu & Tsui, Kwok-Leung & Wang, Shouyang, 2019. "Nonlinear vector auto-regression neural network for forecasting air passenger flow," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 54-62.
    7. Zhou, Heng & Xia, Jianhong (Cecilia) & Luo, Qingzhou & Nikolova, Gabi & Sun, Jie & Hughes, Brett & Kelobonye, Keone & Wang, Hui & Falkmer, Torbjorn, 2018. "Investigating the impact of catchment areas of airports on estimating air travel demand: A case study of regional Western Australia," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 91-103.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Shuyu Li & Rongrong Li, 2017. "Comparison of Forecasting Energy Consumption in Shandong, China Using the ARIMA Model, GM Model, and ARIMA-GM Model," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    10. Rob J. Hyndman & Andrey V. Kostenko, 2007. "Minimum Sample Size requirements for Seasonal Forecasting Models," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 6, pages 12-15, Spring.
    11. Xu, Weijun & Gu, Ren & Liu, Youzhu & Dai, Yongwu, 2015. "Forecasting energy consumption using a new GM–ARMA model based on HP filter: The case of Guangdong Province of China," Economic Modelling, Elsevier, vol. 45(C), pages 127-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaomei & Li, Sihan & Gao, Meina, 2024. "A discrete time-varying grey Fourier model with fractional order terms for electricity consumption forecast," Energy, Elsevier, vol. 296(C).
    2. Rafael Bernardo Carmona Benitez & Maria Rosa Nieto, 2023. "A methodology for calculating the unmet passenger demand in the air transportation industry," Papers 23003, Working Papers of Business and Economics School. Anahuac University (Mexico)..
    3. Hopfe, David H. & Lee, Kiljae & Yu, Chunyan, 2024. "Short-term forecasting airport passenger flow during periods of volatility: Comparative investigation of time series vs. neural network models," Journal of Air Transport Management, Elsevier, vol. 115(C).
    4. Seungju Nam & Sejong Choi & Georgia Edell & Amartya De & Woon-Kyung Song, 2023. "Comparative Analysis of the Aviation Maintenance, Repair, and Overhaul (MRO) Industry in Northeast Asian Countries: A Suggestion for the Development of Korea’s MRO Industry," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    5. Chen, Hai-Bao & Pei, Ling-Ling & Zhao, Yu-Feng, 2021. "Forecasting seasonal variations in electricity consumption and electricity usage efficiency of industrial sectors using a grey modeling approach," Energy, Elsevier, vol. 222(C).
    6. Wang, Zhanwei & Song, Woon-Kyung, 2020. "Sustainable airport development with performance evaluation forecasts: A case study of 12 Asian airports," Journal of Air Transport Management, Elsevier, vol. 89(C).
    7. Huang, Dong & Grifoll, Manel & Sanchez-Espigares, Jose A. & Zheng, Pengjun & Feng, Hongxiang, 2022. "Hybrid approaches for container traffic forecasting in the context of anomalous events: The case of the Yangtze River Delta region in the COVID-19 pandemic," Transport Policy, Elsevier, vol. 128(C), pages 1-12.
    8. Xiong, Xin & Hu, Xi & Guo, Huan, 2021. "A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption," Energy, Elsevier, vol. 234(C).
    9. Maria Rosa Nieto & Rafael Bernardo Carmona-Benítez, 2021. "An Approach to Measure the Performance and the Efficiency of Future Airport Infrastructure," Mathematics, MDPI, vol. 9(16), pages 1-28, August.
    10. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    11. Yin, Chen & Mao, Shuhua, 2023. "Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting," Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    2. Wen-Ze Wu & Chong Liu & Wanli Xie & Mark Goh & Tao Zhang, 2023. "Predictive analysis of the industrial water-waste-energy system using an optimised grey approach: A case study in China," Energy & Environment, , vol. 34(5), pages 1639-1656, August.
    3. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    4. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
    5. Sbrana, Giacomo & Silvestrini, Andrea, 2014. "Random switching exponential smoothing and inventory forecasting," International Journal of Production Economics, Elsevier, vol. 156(C), pages 283-294.
    6. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    7. Jin, Feng & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2020. "Forecasting air passenger demand with a new hybrid ensemble approach," Journal of Air Transport Management, Elsevier, vol. 83(C).
    8. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "China's dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions," Energy, Elsevier, vol. 163(C), pages 151-167.
    9. Gizem Kaya & Umut Aydın & Burç Ülengin, 2023. "A Comparison of Forecasting Performance of PPML and OLS estimators: The Gravity Model in the Air Cargo Market," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 112-128, December.
    10. Ari, Didem & Mizrak Ozfirat, Pinar, 2024. "Comparison of artificial neural networks and regression analysis for airway passenger estimation," Journal of Air Transport Management, Elsevier, vol. 115(C).
    11. Dittmer, Celina & Krümpel, Johannes & Lemmer, Andreas, 2021. "Power demand forecasting for demand-driven energy production with biogas plants," Renewable Energy, Elsevier, vol. 163(C), pages 1871-1877.
    12. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
    13. Qian, Wuyong & Wang, Jue, 2020. "An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China," Energy, Elsevier, vol. 209(C).
    14. Zhou, Wenhao & Li, Hailin & Zhang, Zhiwei, 2022. "A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 128-147.
    15. Sbrana, Giacomo & Silvestrini, Andrea, 2019. "Random switching exponential smoothing: A new estimation approach," International Journal of Production Economics, Elsevier, vol. 211(C), pages 211-220.
    16. Tsionas, Mike G., 2022. "Random and Markov switching exponential smoothing models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    17. Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
    18. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    19. Tillmann, Andreas M. & Joormann, Imke & Ammann, Sabrina C.L., 2023. "Reproducible air passenger demand estimation," Journal of Air Transport Management, Elsevier, vol. 112(C).
    20. Liang, Xiaozhen & Hong, Chenxi & Chen, Jiaqi & Wang, Yingying & Yang, Mingge, 2024. "A hybrid forecasting architecture for air passenger demand considering search engine data and spatial effect," Journal of Air Transport Management, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:82:y:2020:i:c:s0969699719301711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.