IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005910.html
   My bibliography  Save this article

Prediction of infectious disease epidemics via weighted density ensembles

Author

Listed:
  • Evan L Ray
  • Nicholas G Reich

Abstract

Accurate and reliable predictions of infectious disease dynamics can be valuable to public health organizations that plan interventions to decrease or prevent disease transmission. A great variety of models have been developed for this task, using different model structures, covariates, and targets for prediction. Experience has shown that the performance of these models varies; some tend to do better or worse in different seasons or at different points within a season. Ensemble methods combine multiple models to obtain a single prediction that leverages the strengths of each model. We considered a range of ensemble methods that each form a predictive density for a target of interest as a weighted sum of the predictive densities from component models. In the simplest case, equal weight is assigned to each component model; in the most complex case, the weights vary with the region, prediction target, week of the season when the predictions are made, a measure of component model uncertainty, and recent observations of disease incidence. We applied these methods to predict measures of influenza season timing and severity in the United States, both at the national and regional levels, using three component models. We trained the models on retrospective predictions from 14 seasons (1997/1998–2010/2011) and evaluated each model’s prospective, out-of-sample performance in the five subsequent influenza seasons. In this test phase, the ensemble methods showed average performance that was similar to the best of the component models, but offered more consistent performance across seasons than the component models. Ensemble methods offer the potential to deliver more reliable predictions to public health decision makers.Author summary: Public health agencies such as the US Centers for Disease Control and Prevention would like to have as much information as possible when planning interventions intended to reduce and prevent the spread of infectious disease. For instance, accurate and reliable predictions of the timing and severity of the influenza season could help with planning how many influenza vaccine doses to produce and by what date they will be needed. Many different mathematical and statistical models have been proposed to model influenza and other infectious diseases, and these models have different strengths and weaknesses. In particular, one or another of these model specifications is often better than the others in different seasons, at different times within the season, and for different prediction targets (such as different measures of the timing or severity of the influenza season). In this article, we explore ensemble methods that combine predictions from multiple “component” models. We find that these ensemble methods do about as well as the best of the component models in terms of aggregate performance across multiple seasons, but that the ensemble methods have more consistent performance across different seasons. This improved consistency is valuable for planners who need predictions that can be trusted under all circumstances.

Suggested Citation

  • Evan L Ray & Nicholas G Reich, 2018. "Prediction of infectious disease epidemics via weighted density ensembles," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-23, February.
  • Handle: RePEc:plo:pcbi00:1005910
    DOI: 10.1371/journal.pcbi.1005910
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005910
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005910&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Wan Yang & Alicia Karspeck & Jeffrey Shaman, 2014. "Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-15, April.
    3. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    4. Jean-Paul Chretien & Dylan George & Jeffrey Shaman & Rohit A Chitale & F Ellis McKenzie, 2014. "Influenza Forecasting in Human Populations: A Scoping Review," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    2. Tong, Zhaomin & An, Rui & Zhang, Ziyi & Liu, Yaolin & Luo, Minghai, 2022. "Exploring non-linear and spatially non-stationary relationships between commuting burden and built environment correlates," Journal of Transport Geography, Elsevier, vol. 104(C).
    3. Prashant Rangarajan & Sandeep K Mody & Madhav Marathe, 2019. "Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-24, November.
    4. Ray, Evan L. & Brooks, Logan C. & Bien, Jacob & Biggerstaff, Matthew & Bosse, Nikos I. & Bracher, Johannes & Cramer, Estee Y. & Funk, Sebastian & Gerding, Aaron & Johansson, Michael A. & Rumack, Aaron, 2023. "Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1366-1383.
    5. Denis A Shah & Erick D De Wolf & Pierce A Paul & Laurence V Madden, 2021. "Accuracy in the prediction of disease epidemics when ensembling simple but highly correlated models," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-23, March.
    6. Yan Hao & Ting Xu & Hongping Hu & Peng Wang & Yanping Bai, 2020. "Prediction and analysis of Corona Virus Disease 2019," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
    7. Sen Pei & Jeffrey Shaman, 2020. "Aggregating forecasts of multiple respiratory pathogens supports more accurate forecasting of influenza-like illness," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-19, October.
    8. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    9. Tim K. Tsang & Qiurui Du & Benjamin J. Cowling & Cécile Viboud, 2024. "An adaptive weight ensemble approach to forecast influenza activity in an irregular seasonality context," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    11. Michal Ben-Nun & Pete Riley & James Turtle & David P Bacon & Steven Riley, 2019. "Forecasting national and regional influenza-like illness for the USA," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-20, May.
    12. Nicholas G Reich & Craig J McGowan & Teresa K Yamana & Abhinav Tushar & Evan L Ray & Dave Osthus & Sasikiran Kandula & Logan C Brooks & Willow Crawford-Crudell & Graham Casey Gibson & Evan Moore & Reb, 2019. "Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-19, November.
    13. Asmita Mahajan & Nonita Sharma & Silvia Aparicio-Obregon & Hashem Alyami & Abdullah Alharbi & Divya Anand & Manish Sharma & Nitin Goyal, 2022. "A Novel Stacking-Based Deterministic Ensemble Model for Infectious Disease Prediction," Mathematics, MDPI, vol. 10(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas G Reich & Craig J McGowan & Teresa K Yamana & Abhinav Tushar & Evan L Ray & Dave Osthus & Sasikiran Kandula & Logan C Brooks & Willow Crawford-Crudell & Graham Casey Gibson & Evan Moore & Reb, 2019. "Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-19, November.
    2. Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
    3. Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
    4. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
    5. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    6. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    7. Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
    8. Han Lin Shang, 2017. "Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 36(1), pages 55-84, February.
    9. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    10. Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
    11. Yang, Yang & Shang, Han Lin & Raymer, James, 2024. "Forecasting Australian fertility by age, region, and birthplace," International Journal of Forecasting, Elsevier, vol. 40(2), pages 532-548.
    12. Rostami-Tabar, Bahman & Ziel, Florian, 2022. "Anticipating special events in Emergency Department forecasting," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1197-1213.
    13. Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
    14. Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
    15. Giacomo Sbrana & Andrea Silvestrini, 2024. "The structural Theta method and its predictive performance in the M4-Competition," Temi di discussione (Economic working papers) 1457, Bank of Italy, Economic Research and International Relations Area.
    16. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    17. Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023. "Distributed ARIMA models for ultra-long time series," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
    18. Han Lin Shang & Rob J Hyndman, 2016. "Grouped functional time series forecasting: An application to age-specific mortality rates," Monash Econometrics and Business Statistics Working Papers 4/16, Monash University, Department of Econometrics and Business Statistics.
    19. Spiliotis, Evangelos & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Generalizing the Theta method for automatic forecasting," European Journal of Operational Research, Elsevier, vol. 284(2), pages 550-558.
    20. Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.