IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224017225.html
   My bibliography  Save this article

Forecasting of biogas potential using artificial neural networks and time series models for Türkiye to 2035

Author

Listed:
  • Şenol, Halil
  • Çolak, Emre
  • Oda, Volkan

Abstract

Being among the developing countries, Türkiye's electrical needs are increasing day by day with its increase in population. To address this need, consideration should be given to bovine manure-based biogas potential (BMBP), which is a renewable energy source, particularly as one of Türkiye's national livelihoods – which is dependent on foreign countries for energy – is livestock farming. Although there are significant numbers of bovine stock distributed across the various geographical regions of Türkiye, there are no studies to date that have attempted to determine the BMBPs of these regions, either for past or future years. The aim of the current study was to calculate for the first time the BMBP for seven different regions of Türkiye between 2004 and 2021 and to estimate these for 2022 to 2035 using Artificial Neural Networks (ANN), autoregressive integrated moving averages (ARIMA) from time series, and linear regression models. Türkiye's BMBP for 2021 has been calculated to be 14,262 GWh/year, which corresponds to approximately 3.2 % of the total renewable energy used by Türkiye in 2021. For 2035, Türkiye's BMBP has been forecast to be 19,905 GWh/year according to ANN's Levenberg-Marquardt algorithm, 16,862 GWh/year according to the Bayesian Regularization algorithm, 19,329 GWh/year according to ARIMA, and 19,897 GWh/year according to the Linear Regression method. All the models proposed for predicting the BMBPs for different geographical regions in Türkiye for the coming years of interest were found to perform extremely well (MSE = 205–7917 and MAPE = 0.919–4.430). When evaluated on a regional basis, the highest BMBP for 2021 was forecasted to be 3163 GWh/year for the Central Anatolia region, which corresponded to approximately 7 % of its total electricity consumption. Considering these values, it is clear that BMBP can provide significant savings with regard to the volume of electrical energy Türkiye will require in the coming years.

Suggested Citation

  • Şenol, Halil & Çolak, Emre & Oda, Volkan, 2024. "Forecasting of biogas potential using artificial neural networks and time series models for Türkiye to 2035," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224017225
    DOI: 10.1016/j.energy.2024.131949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224017225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bórawski, Piotr & Holden, Lisa & Bełdycka-Bórawska, Aneta, 2023. "Perspectives of photovoltaic energy market development in the european union," Energy, Elsevier, vol. 270(C).
    2. Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023. "Distributed ARIMA models for ultra-long time series," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
    3. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    4. Chowdhury, Hemal & Chowdhury, Tamal & Miskat, Monirul Islam & Hossain, Nazia & Chowdhury, Piyal & Sait, Sadiq M., 2021. "Potential of biogas and bioelectricity production from Rohingya camp in Bangladesh: A case study," Energy, Elsevier, vol. 214(C).
    5. Toklu, E. & Güney, M.S. & IsIk, M. & ComaklI, O. & Kaygusuz, K., 2010. "Energy production, consumption, policies and recent developments in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1172-1186, May.
    6. Lovrak, Ana & Pukšec, Tomislav & Grozdek, Marino & Duić, Neven, 2022. "An integrated Geographical Information System (GIS) approach for assessing seasonal variation and spatial distribution of biogas potential from industrial residues and by-products," Energy, Elsevier, vol. 239(PB).
    7. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
    8. Şenol, Halil & Ali Dereli̇, Mehmet & Özbilgin, Ferdi, 2021. "Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Bilgili, Mehmet & Pinar, Engin, 2023. "Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye," Energy, Elsevier, vol. 284(C).
    10. Tumen Ozdil, N.F. & Caliskan, M., 2022. "Energy potential from biomass from agricultural crops: Development prospects of the Turkish bioeconomy," Energy, Elsevier, vol. 249(C).
    11. Demirbas, Ayhan, 2008. "Importance of biomass energy sources for Turkey," Energy Policy, Elsevier, vol. 36(2), pages 834-842, February.
    12. Janaina Camile Pasqual & Harry Alberto Bollmann & Christopher A. Scott & Thiago Edwiges & Thais Carlini Baptista, 2018. "Assessment of Collective Production of Biomethane from Livestock Waste for Urban Transportation Mobility in Brazil and the United States," Energies, MDPI, vol. 11(4), pages 1-19, April.
    13. Hasan Ertop & Atilgan Atilgan & Joanna Kocięcka & Anna Krakowiak-Bal & Daniel Liberacki & Burak Saltuk & Roman Rolbiecki, 2023. "Calculation of the Potential Biogas and Electricity Values of Animal Wastes: Turkey and Poland Case," Energies, MDPI, vol. 16(22), pages 1-19, November.
    14. Ozgur, M. Arif, 2008. "Review of Turkey's renewable energy potential," Renewable Energy, Elsevier, vol. 33(11), pages 2345-2356.
    15. Sheikhi Kordkheili, Masoud & Rahimpour, Farshad, 2023. "Artificial neural network and semi-empirical modeling of industrial-scale Gasoil hydrodesulfurization reactor temperature profile," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 198-215.
    16. Bolen, T.J. & Hasan, Mahmudul & Conway, Timothy & Stéphane Yaméogo, Djigui David & Sanchez, Pablo & Rahman, Arifur & Azam, Hossain, 2022. "Feasibility assessment of biogas production from the anaerobic co-digestion of cheese whey, grease interceptor waste and pulped food waste for WRRF," Energy, Elsevier, vol. 254(PA).
    17. Scarlat, Nicolae & Fahl, Fernando & Dallemand, Jean-François & Monforti, Fabio & Motola, Vicenzo, 2018. "A spatial analysis of biogas potential from manure in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 915-930.
    18. Lillo-Bravo, I. & Vera-Medina, J. & Fernandez-Peruchena, C. & Perez-Aparicio, E. & Lopez-Alvarez, J.A. & Delgado-Sanchez, J.M., 2023. "Random Forest model to predict solar water heating system performance," Renewable Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    2. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    3. Çapik, Mehmet & Yılmaz, Ali Osman & Çavuşoğlu, İbrahim, 2012. "Present situation and potential role of renewable energy in Turkey," Renewable Energy, Elsevier, vol. 46(C), pages 1-13.
    4. Tjutju, N.A.S. & Ammenberg, J. & Lindfors, A., 2024. "Biogas potential studies: A review of their scope, approach, and relevance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    5. Akca, Mehmet Sadik & Sarikaya, Omer Visali & Doker, Mehmet Fatih & Ocak, Fatih & Kirlangicoglu, Cem & Karaaslan, Yakup & Satoglu, Sule Itir & Altinbas, Mahmut, 2023. "A detailed GIS based assessment of bioenergy plant locations using location-allocation algorithm," Applied Energy, Elsevier, vol. 352(C).
    6. Melikoglu, Mehmet, 2013. "Vision 2023: Feasibility analysis of Turkey's renewable energy projection," Renewable Energy, Elsevier, vol. 50(C), pages 570-575.
    7. Li, Xuetao & Wang, Ziwei & Yang, Chengying & Bozkurt, Ayhan, 2024. "An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms," Energy, Elsevier, vol. 296(C).
    8. Hemal Chowdhury & Tamal Chowdhury & Ayyoob Sharifi & Richard Corkish & Sadiq M. Sait, 2022. "Role of Biogas in Achieving Sustainable Development Goals in Rohingya Refugee Camps in Bangladesh," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    9. Daniya Tlegenova, 2015. "Forecasting Exchange Rates Using Time Series Analysis: The sample of the currency of Kazakhstan," Papers 1508.07534, arXiv.org.
    10. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    11. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    12. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    13. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    14. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    15. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    16. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    17. S M Mezbahul Amin & Abul Hasnat & Nazia Hossain, 2023. "Designing and Analysing a PV/Battery System via New Resilience Indicators," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    18. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    19. Li, Der-Chiang & Chang, Che-Jung & Chen, Chien-Chih & Chen, Wen-Chih, 2012. "Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case," Omega, Elsevier, vol. 40(6), pages 767-773.
    20. Liu, Xinyu & Yang, Jianping & Yang, Chunhe & Zhang, Zheyuan & Chen, Weizhong, 2023. "Numerical simulation on cavern support of compressed air energy storage(CAES)considering thermo-mechanical coupling effect," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224017225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.