IDEAS home Printed from https://ideas.repec.org/p/han/dpaper/dp-605.html
   My bibliography  Save this paper

Ein stochastisches Prognosemodell internationaler Migration in Deutschland

Author

Listed:
  • Vanella, Patrizio
  • Deschermeier, Philipp

Abstract

Internationale Migration ist eines der gesellschaftlich am kontroversesten diskutierten Themen. Kritiker einer offenen Migrationspolitik sehen hohe Immigrationszahlen als großes Risiko für die Sicherheit und warnen vor möglichen Verdrängungseffekten am Arbeitsmarkt, während die Befürworter u.a. argumentieren, dass internationale Migration aus demografischer Sicht eine große Chance sei, die Folgen des Demografischen Wandels durch eine Erhöhung und Verjüngung der Bevölkerung auszubremsen und vor allem das Arbeitskräfteangebot in vom Fachkräftemangel bereits betroffenen Wirtschaftsbereichen zu erhöhen. Aus diesen Gründen ist es umso wichtiger, eine sachliche Diskussion auf Basis empirischer Ergebnisse zu führen. Eine quantitative Diskussionsgrundlage bildet in diesem Zusammenhang eine Prognose der zukünftigen Migrationsströme für Planungen in der Politik und dem Unternehmenskontext, was bisher nur unzureichend durchgeführt wird. Hierfür stellen wir einen Modellansatz für die Prognose der internationalen Nettomigration zwischen Deutschland und dem Ausland, differenziert nach Geschlecht, Alter und Nationalitätsgruppen, vor. Der Beitrag liefert stochastische Prognosen der zukünftigen Nettomigrationen auf Basis eines Hauptkomponenten-Zeitreihenmodells. Bei diesem Verfahren bilden Prognoseintervalle die Unsicherheit über die zukünftige Entwicklung ab.

Suggested Citation

  • Vanella, Patrizio & Deschermeier, Philipp, 2017. "Ein stochastisches Prognosemodell internationaler Migration in Deutschland," Hannover Economic Papers (HEP) dp-605, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  • Handle: RePEc:han:dpaper:dp-605
    as

    Download full text from publisher

    File URL: http://diskussionspapiere.wiwi.uni-hannover.de/pdf_bib/dp-605.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    2. Fuchs, Johann & Söhnlein, Doris & Weber, Brigitte & Weber, Enzo, 2017. "Forecasting labour supply and population: an integrated stochastic model," IAB-Discussion Paper 201701, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    3. Vanella, Patrizio, 2017. "Stochastische Prognose demografischer Komponenten auf Basis der Hauptkomponentenanalyse," Hannover Economic Papers (HEP) dp-597, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    5. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    6. Deschermeier, Philipp, 2016. "Einfluss der Zuwanderung auf die demografische Entwicklung in Deutschland," IW-Trends – Vierteljahresschrift zur empirischen Wirtschaftsforschung, Institut der deutschen Wirtschaft (IW) / German Economic Institute, vol. 43(2), pages 21-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vanella, Patrizio, 2017. "Age- and Sex-Specific Fertility in Germany until the Year 2040 - The Impact of International Migration," Hannover Economic Papers (HEP) dp-606, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
    2. Vanella, Patrizio, 2017. "Age- and Sex-Specific Fertility in Germany until the Year 2040 - The Impact of International Migration," Hannover Economic Papers (HEP) dp-606, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    3. Rob J Hyndman & Yijun Zeng & Han Lin Shang, 2020. "Forecasting the Old-Age Dependency Ratio to Determine a Sustainable Pension Age," Monash Econometrics and Business Statistics Working Papers 31/20, Monash University, Department of Econometrics and Business Statistics.
    4. Phillip A. Jang & David S. Matteson, 2023. "Spatial correlation in weather forecast accuracy: a functional time series approach," Computational Statistics, Springer, vol. 38(3), pages 1215-1229, September.
    5. Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
    6. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    7. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    8. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    9. Deschermeier Philipp, 2014. "Prognose der Anzahl der Erwerbspersonen: Eine Vorausberechnung auf Basis der Funktionalen Datenanalyse am Beispiel der Metropolregion Rhein-Neckar," ZFW – Advances in Economic Geography, De Gruyter, vol. 58(1), pages 50-65, October.
    10. Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
    11. Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
    12. Vanella, Patrizio & Deschermeier, Philipp, 2018. "A Probabilistic Cohort-Component Model for Population Forecasting - The Case of Germany," Hannover Economic Papers (HEP) dp-638, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    13. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    14. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    15. Tickle Leonie & Booth Heather, 2014. "The Longevity Prospects of Australian Seniors: An Evaluation of Forecast Method and Outcome," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 8(2), pages 259-292, July.
    16. Bernard Baffour & James Raymer, 2019. "Estimating multiregional survivorship probabilities for sparse data: An application to immigrant populations in Australia, 1981–2011," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 40(18), pages 463-502.
    17. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    18. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    19. Gleditsch Rebecca Folkman & Syse Astri & Thomas Michael J., 2021. "Fertility Projections in a European Context: A Survey of Current Practices among Statistical Agencies," Journal of Official Statistics, Sciendo, vol. 37(3), pages 547-568, September.
    20. Arkadiusz Wiśniowski & Peter Smith & Jakub Bijak & James Raymer & Jonathan Forster, 2015. "Bayesian Population Forecasting: Extending the Lee-Carter Method," Demography, Springer;Population Association of America (PAA), vol. 52(3), pages 1035-1059, June.

    More about this item

    Keywords

    Demografische Prognostik; Migrationsforschung; Hauptkomponentenanalyse; Zeitreihenanalyse;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F66 - International Economics - - Economic Impacts of Globalization - - - Labor
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
    • J18 - Labor and Demographic Economics - - Demographic Economics - - - Public Policy
    • J61 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Geographic Labor Mobility; Immigrant Workers

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:han:dpaper:dp-605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Heidrich, Christian (email available below). General contact details of provider: https://edirc.repec.org/data/fwhande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.