IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v572y2021ics0378437120308694.html
   My bibliography  Save this article

Transfer of macroeconomic shocks in stress tests modeling

Author

Listed:
  • Rojas, Helder
  • Dias, David

Abstract

In this paper, we are interested in evaluating the resilience of financial portfolios under extreme economic conditions. Therefore, we use empirical measures to characterize the transmission process of macroeconomic shocks to risk parameters. We propose the use of an extensive family of models, called General Transfer Function Models, which condense well the characteristics of the transmission described by the impact measures. The procedure for estimating the parameters of these models is described employing the Bayesian approach and using the prior information provided by the impact measures. In addition, we illustrate the use of the estimated models from the credit risk data of a portfolio.

Suggested Citation

  • Rojas, Helder & Dias, David, 2021. "Transfer of macroeconomic shocks in stress tests modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
  • Handle: RePEc:eee:phsmap:v:572:y:2021:i:c:s0378437120308694
    DOI: 10.1016/j.physa.2020.125571
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120308694
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dent, Kieran & Westwood, Ben & Segoviano, Miguel, 2016. "Stress testing of banks: an introduction," Bank of England Quarterly Bulletin, Bank of England, vol. 56(3), pages 130-143.
    2. Romy R. Ravines & Alexandra M. Schmidt & Helio S. Migon, 2006. "Revisiting distributed lag models through a Bayesian perspective," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(2), pages 193-210, March.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    4. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    5. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    6. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    7. Henry, Jérôme & Zimmermann, Maik & Leber, Miha & Kolb, Markus & Grodzicki, Maciej & Amzallag, Adrien & Vouldis, Angelos & Hałaj, Grzegorz & Pancaro, Cosimo & Gross, Marco & Baudino, Patrizia & Sydow, , 2013. "A macro stress testing framework for assessing systemic risks in the banking sector," Occasional Paper Series 152, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helder Rojas & David Dias, 2018. "Transmission of Macroeconomic Shocks to Risk Parameters: Their uses in Stress Testing," Papers 1809.07401, arXiv.org, revised May 2019.
    2. Helder Rojas & David Dias, 2020. "Transmission of macroeconomic shocks to risk parameters: Their uses in stress testing," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(3), pages 353-380, May.
    3. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    4. Carlos A. Abanto-Valle & Gabriel Rodríguez & Hernán B. Garrafa-Aragón, 2020. "Stochastic Volatility in Mean: Empirical Evidence from Stock Latin American Markets," Documentos de Trabajo / Working Papers 2020-481, Departamento de Economía - Pontificia Universidad Católica del Perú.
    5. Guisinger, Amy Y. & Owyang, Michael T. & Soques, Daniel, 2024. "Industrial Connectedness and Business Cycle Comovements," Econometrics and Statistics, Elsevier, vol. 29(C), pages 132-149.
    6. Assaf, A. George & Tsionas, Mike & Oh, Haemoon, 2018. "The time has come: Toward Bayesian SEM estimation in tourism research," Tourism Management, Elsevier, vol. 64(C), pages 98-109.
    7. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    8. Abanto-Valle, Carlos A. & Rodríguez, Gabriel & Garrafa-Aragón, Hernán B., 2021. "Stochastic Volatility in Mean: Empirical evidence from Latin-American stock markets using Hamiltonian Monte Carlo and Riemann Manifold HMC methods," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 272-286.
    9. Hałaj, Grzegorz, 2018. "Agent-based model of system-wide implications of funding risk," Working Paper Series 2121, European Central Bank.
    10. Rostami-Tabar, Bahman & Ziel, Florian, 2022. "Anticipating special events in Emergency Department forecasting," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1197-1213.
    11. Chiranjit Dutta & Nalini Ravishanker & Sumanta Basu, 2022. "Modeling Multivariate Positive-Valued Time Series Using R-INLA," Papers 2206.05374, arXiv.org, revised Jul 2022.
    12. Areti Boulieri & Silvia Liverani & Kees Hoogh & Marta Blangiardo, 2017. "A space–time multivariate Bayesian model to analyse road traffic accidents by severity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 119-139, January.
    13. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
    14. Iseringhausen, Martin, 2020. "The time-varying asymmetry of exchange rate returns: A stochastic volatility – stochastic skewness model," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 275-292.
    15. de Silva, Ashton, 2008. "Forecasting macroeconomic variables using a structural state space model," MPRA Paper 11060, University Library of Munich, Germany.
    16. Nima Nonejad, 2019. "Has the 2008 financial crisis and its aftermath changed the impact of inflation on inflation uncertainty in member states of the european monetary union?," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(2), pages 246-276, May.
    17. Nibbering, Didier & Paap, Richard & van der Wel, Michel, 2018. "What do professional forecasters actually predict?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 288-311.
    18. Oksana Bollineni‐Balabay & Jan van den Brakel & Franz Palm & Harm Jan Boonstra, 2017. "Multilevel hierarchical Bayesian versus state space approach in time series small area estimation: the Dutch Travel Survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1281-1308, October.
    19. Hiroyuki Kawakatsu, 2020. "Recovering Yield Curves from Dynamic Term Structure Models with Time-Varying Factors," Stats, MDPI, vol. 3(3), pages 1-46, August.
    20. Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:572:y:2021:i:c:s0378437120308694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.