“A new metric of consensus for Likert scales”
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Oscar Claveria, 2018. "“A new metric of consensus for Likert scales”," IREA Working Papers 201821, University of Barcelona, Research Institute of Applied Economics, revised Oct 2018.
References listed on IDEAS
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Binder, Carola Conces, 2015. "Whose expectations augment the Phillips curve?," Economics Letters, Elsevier, vol. 136(C), pages 35-38.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
- von der Gracht, Heiko A., 2012. "Consensus measurement in Delphi studies," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1525-1536.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Kaufmann, Daniel & Scheufele, Rolf, 2017.
"Business tendency surveys and macroeconomic fluctuations,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
- Daniel Kaufmann & Rolf Scheufele, 2015. "Business tendency surveys and macroeconomic fluctuations," KOF Working papers 15-378, KOF Swiss Economic Institute, ETH Zurich.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Oscar Claveria, 2021. "On the Aggregation of Survey-Based Economic Uncertainty Indicators Between Different Agents and Across Variables," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(1), pages 1-26, April.
- Oscar Claveria, 2021. "Forecasting with Business and Consumer Survey Data," Forecasting, MDPI, vol. 3(1), pages 1-22, February.
- Oscar Claveria, 2020.
"“Measuring and assessing economic uncertainty”,"
AQR Working Papers
2012003, University of Barcelona, Regional Quantitative Analysis Group, revised Jul 2020.
- Oscar Claveria, 2020. "Measuring and assessing economic uncertainty," IREA Working Papers 202011, University of Barcelona, Research Institute of Applied Economics, revised Jul 2020.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marc Burri & Daniel Kaufmann, 2020.
"A daily fever curve for the Swiss economy,"
Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-11, December.
- Marc Burri & Daniel Kaufmann, 2020. "A daily fever curve for the Swiss economy," IRENE Working Papers 20-05, IRENE Institute of Economic Research.
- Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
- Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017.
"Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming,"
IREA Working Papers
201711, University of Barcelona, Research Institute of Applied Economics, revised May 2017.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming”," AQR Working Papers 201706, University of Barcelona, Regional Quantitative Analysis Group, revised May 2017.
- Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021.
"Non‐linear mixed‐effects models for time series forecasting of smart meter demand,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
- Cameron Roach & Rob J Hyndman & Souhaib Ben Taieb, 2020. "Nonlinear Mixed Effects Models for Time Series Forecasting of Smart Meter Demand," Monash Econometrics and Business Statistics Working Papers 41/20, Monash University, Department of Econometrics and Business Statistics.
- Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Drachal, Krzysztof, 2019. "Forecasting prices of selected metals with Bayesian data-rich models," Resources Policy, Elsevier, vol. 64(C).
- Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
- Mihaela Bratu (Simionescu), 2013. "How to Improve the SPF Forecasts?," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 9(2), pages 153-165, April.
- Emilian Dobrescu, 2014. "Attempting to Quantify the Accuracy of Complex Macroeconomic Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-21, December.
- Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Krzysztof Drachal, 0000. "Choosing Parameters for Bayesian Symbolic Regression: An Application to Modelling Commodities Prices," Proceedings of Economics and Finance Conferences 14116014, International Institute of Social and Economic Sciences.
- Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
- Maheu, John M. & Song, Yong, 2014.
"A new structural break model, with an application to Canadian inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 144-160.
- John M. Maheu & Yong Song, 2012. "A New Structural Break Model with Application to Canadian Inflation Forecasting," Working Paper series 27_12, Rimini Centre for Economic Analysis.
- John M Maheu & Yong Song, 2012. "A New Structural Break Model with Application to Canadian Inflation Forecasting," Working Papers tecipa-448, University of Toronto, Department of Economics.
- Maheu, John & Song, Yong, 2012. "A new structural break model with application to Canadian inflation forecasting," MPRA Paper 36870, University Library of Munich, Germany.
- Bialowolski, Piotr & Kuszewski, Tomasz & Witkowski, Bartosz, 2015.
"Bayesian averaging vs. dynamic factor models for forecasting economic aggregates with tendency survey data,"
Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-37.
- Bialowolski, Piotr & Kuszewski, Tomasz & Witkowski, Bartosz, 2015. "Bayesian averaging vs. dynamic factor models for forecasting economic aggregates with tendency survey data," Economics Discussion Papers 2015-28, Kiel Institute for the World Economy (IfW Kiel).
- Kunze, Frederik, 2017. "Predicting exchange rates in Asia: New insights on the accuracy of survey forecasts," University of Göttingen Working Papers in Economics 326, University of Goettingen, Department of Economics.
- Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
- Kristian Jönsson, 2020. "Machine Learning and Nowcasts of Swedish GDP," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 16(2), pages 123-134, November.
More about this item
Keywords
Likert scales; consensus; geometry; economic tendency surveys; consumer expectations; unemployment JEL classification: C14; C51; C52; C53; D12; E24;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C5 - Mathematical and Quantitative Methods - - Econometric Modeling
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FOR-2018-11-12 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aqr:wpaper:201810. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibiana Barnadas (email available below). General contact details of provider: https://edirc.repec.org/data/aqrubes.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.