IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v25y2009i6p806-823.html
   My bibliography  Save this article

A multivariate time series approach to projected life tables

Author

Listed:
  • Dorina Lazar
  • Michel M. Denuit

Abstract

The method of mortality forecasting proposed by Lee and Carter describes a time series of age‐specific log‐death rates as a sum of an independent of time age‐specific component and a bilinear term in which one of the component is a time‐varying factor reflecting general change in mortality and the second one is an age‐specific parameter. Such a rigid model structure implies that on average the mortality improvements for different age groups should be proportional, regardless of the calendar period: a single time factor drives the future death rates. This paper investigates the use of multivariate time series techniques for forecasting age‐specific death rates. This approach allows for relative speed of decline in the log death rates specific to the different ages. The dynamic factor analysis and the Johansen cointegration methodology are successfully applied to project mortality. The inclusion of several time factors allows the model to capture the imperfect correlations in death rates from 1 year to the next. The benchmark Lee–Carter model appears as a special case of these approaches. An empirical study is conducted with the help of the Johansen cointegration methodology. A vector‐error correction model is fitted to Belgian general population death rates. A comparison is performed with the forecast of life expectancies obtained from the classical Lee–Carter model. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Dorina Lazar & Michel M. Denuit, 2009. "A multivariate time series approach to projected life tables," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 806-823, November.
  • Handle: RePEc:wly:apsmbi:v:25:y:2009:i:6:p:806-823
    DOI: 10.1002/asmb.781
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.781
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arthur Renshaw & Steven Haberman, 2003. "Lee–Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 119-137, January.
    2. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
    3. Gregory C. Reinsel & Sung K. Ahn, 1992. "Vector Autoregressive Models With Unit Roots And Reduced Rank Structure:Estimation. Likelihood Ratio Test, And Forecasting," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(4), pages 353-375, July.
    4. Carsten Trenkler, 2003. "A new set of critical values for systems cointegration tests with a prior adjustment for deterministic terms," Economics Bulletin, AccessEcon, vol. 3(11), pages 1-9.
    5. Ronald Lee, 2000. "The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(1), pages 80-91.
    6. Kirstin Hubrich & Helmut Lutkepohl & Pentti Saikkonen, 2001. "A Review Of Systems Cointegration Tests," Econometric Reviews, Taylor & Francis Journals, vol. 20(3), pages 247-318.
    7. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    8. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
    9. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    10. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    11. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    12. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    13. David F. Hendry & Katarina Juselius, 2001. "Explaining Cointegration Analysis: Part II," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 75-120.
    14. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    15. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    16. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    17. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    18. Juselius, Katarina, 2006. "The Cointegrated VAR Model: Methodology and Applications," OUP Catalogue, Oxford University Press, number 9780199285679.
    19. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Doukhan & Joseph Rynkiewicz & Yahia Salhi, 2021. "Optimal Neighborhood Selection for AR-ARCH Random Fields with Application to Mortality," Stats, MDPI, vol. 5(1), pages 1-26, December.
    2. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    3. Arnold, Séverine & Glushko, Viktoriya, 2021. "Cause-specific mortality rates: Common trends and differences," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 294-308.
    4. A. Debòn & S. Haberman & F. Montes & E. Otranto, 2012. "Model effect on projected mortality indicators," Working Paper CRENoS 201215, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    5. Li, Hong & Lu, Yang, 2017. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 563-600, May.
    6. Bent Nielsen & J.P. Nielsen, 2010. "Identification and forecasting in the Lee-Carter model," Economics Series Working Papers 2010-W07, University of Oxford, Department of Economics.
    7. Giuseppe Giordano & Steven Haberman & Maria Russolillo, 2019. "Coherent modeling of mortality patterns for age-specific subgroups," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 189-204, June.
    8. Jarner, Søren F. & Jallbjørn, Snorre, 2020. "Pitfalls and merits of cointegration-based mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 80-93.
    9. Dorina Lazar & Anuta Buiga & Adela Deaconu, 2016. "Common Stochastic Trends in European Mortality Levels: Testing and Consequences for Modeling Longevity Risk in Insurance," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 152-168, June.
    10. Yahia Salhi & Stéphane Loisel, 2012. "Basis risk modelling: a co-integration based approach," Working Papers hal-00746859, HAL.
    11. Stéphane Loisel, 2010. "Understanding, Modeling and Managing Longevity Risk: Key Issues and Main Challenges," Post-Print hal-00517902, HAL.
    12. Laurent Callot & Niels Haldrup & Malene Kallestrup-Lamb, 2016. "Deterministic and stochastic trends in the Lee–Carter mortality model," Applied Economics Letters, Taylor & Francis Journals, vol. 23(7), pages 486-493, May.
    13. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    14. Yahia Salhi & Stéphane Loisel, 2017. "Basis risk modelling: a co-integration based approach," Post-Print hal-00746859, HAL.
    15. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
    16. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    17. Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
    18. Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    2. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "A comparison of semiparametric tests for fractional cointegration," Statistical Papers, Springer, vol. 62(4), pages 1997-2030, August.
    3. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    4. Patrick Wilson & Michael White & Neil Dunse & Chee Cheong & Ralf Zurbruegg, 2011. "Modelling Price Movements in Housing Micro Markets," Urban Studies, Urban Studies Journal Limited, vol. 48(9), pages 1853-1874, July.
    5. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    6. Piotr Wdowiński, 2011. "Model monetarny kursu równowagi złoty/euro: analiza kointegracyjna," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 67-86.
    7. David O. Cushman, 2007. "A portfolio balance approach to the Canadian–U.S. exchange rate," Review of Financial Economics, John Wiley & Sons, vol. 16(3), pages 305-320.
    8. Gaolu Zou & K. W. Chau, 2019. "Long- and Short-Run Effects of Fuel Prices on Freight Transportation Volumes in Shanghai," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    9. Carsten Trenkler*, 2005. "The Effects of Ignoring Level Shifts on Systems Cointegration Tests," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 89(3), pages 281-301, August.
    10. Carsten Trenkler, 2008. "Determining p-values for systems cointegration tests with a prior adjustment for deterministic terms," Computational Statistics, Springer, vol. 23(1), pages 19-39, January.
    11. Hallin, M. & van den Akker, R. & Werker, B.J.M., 2012. "Rank-based Tests of the Cointegrating Rank in Semiparametric Error Correction Models," Other publications TiSEM bc68a2f2-3ca3-443c-b3ac-f, Tilburg University, School of Economics and Management.
    12. Guillén, Osmani Teixeira & Hecq, Alain & Issler, João Victor & Saraiva, Diogo, 2015. "Forecasting multivariate time series under present-value model short- and long-run co-movement restrictions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 862-875.
    13. Taha, Roshaiza & Colombage, Sisira R.N. & Maslyuk, Svetlana & Nanthakumar, Loganathan, 2013. "Does financial system activity affect tax revenue in Malaysia? Bounds testing and causality approach," Journal of Asian Economics, Elsevier, vol. 24(C), pages 147-157.
    14. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2008. "Dynamic Stock Market Interactions between the Canadian, Mexican, and the United States Markets: The NAFTA Experience," Working papers 2008-49, University of Connecticut, Department of Economics.
    15. Ladislav Kristoufek, 2022. "On the role of stablecoins in cryptoasset pricing dynamics," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-26, December.
    16. Noriega Antonio E. & Ramos Francia Manuel & Rodríguez-Pérez Cid Alonso, 2015. "Money Demand Estimations in Mexico and of its Stability 1986-2010, as well as Some Examples of its Uses," Working Papers 2015-13, Banco de México.
    17. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, October.
    18. Lütkepohl, Helmut, 1999. "Vector autoregressive analysis," SFB 373 Discussion Papers 1999,31, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    19. Chee Seng Cheong & Patrick J. Wilson & Ralf Zurbruegg, 2009. "An analysis of the long‐run impact of fixed income and equity market performance on Australian and UK securitised property markets," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 27(3), pages 259-276, April.
    20. Hallin, M. & Werker, B.J.M. & van den Akker, R., 2015. "Optimal Pseudo-Gaussian and Rank-based Tests of the Cointegration Rank in Semiparametric Error-correction Models," Other publications TiSEM d1b040c9-db57-4e55-846f-4, Tilburg University, School of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:25:y:2009:i:6:p:806-823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.