IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v33y2022i1ne2701.html
   My bibliography  Save this article

Random fields on the hypertorus: Covariance modeling and applications

Author

Listed:
  • Emilio Porcu
  • Philip A. White

Abstract

This article gives a comprehensive theoretical framework to the modeling, inference, and applications of Gaussian random fields using what we term the hypertorus as an index set. The hypertorus is obtained through a product of hyperspheres. We envision the following as appropriate settings for random fields on the hypertorus: continuous‐time data with multiple sources of seasonality, directional data with seasonality or over the globe, and global spatiotemporal data with temporal seasonality. We propose modeling strategies for such data through covariance structures over the hypertorus. We develop various families of covariance functions over the hypertorus and discuss how to construct random fields using these covariance functions. We show the utility of our findings on three datasets. Our first example is a dataset of ozone concentrations from Mexico City that exhibits multiple sources of seasonality. Our second dataset is a wind speed dataset, where the data show daily seasonality and are indexed by wind direction. Our third illustration considers a global space‐time dataset of cloud coverage, demonstrating strong seasonality. In all analyses, we compare the predictive performance of random fields specified through various covariance structures and examine the results of the best predictive model.

Suggested Citation

  • Emilio Porcu & Philip A. White, 2022. "Random fields on the hypertorus: Covariance modeling and applications," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
  • Handle: RePEc:wly:envmet:v:33:y:2022:i:1:n:e2701
    DOI: 10.1002/env.2701
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2701
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James E. Matheson & Robert L. Winkler, 1976. "Scoring Rules for Continuous Probability Distributions," Management Science, INFORMS, vol. 22(10), pages 1087-1096, June.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Emilio Porcu & Alfredo Alegria & Reinhard Furrer, 2018. "Modeling Temporally Evolving and Spatially Globally Dependent Data," International Statistical Review, International Statistical Institute, vol. 86(2), pages 344-377, August.
    4. P. A. White & E. Porcu, 2019. "Nonseparable covariance models on circles cross time: A study of Mexico City ozone," Environmetrics, John Wiley & Sons, Ltd., vol. 30(5), August.
    5. Gneiting, Tilmann & Larson, Kristin & Westrick, Kenneth & Genton, Marc G. & Aldrich, Eric, 2006. "Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching SpaceTime Method," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 968-979, September.
    6. Gandoman, Foad H. & Abdel Aleem, Shady H.E. & Omar, Noshin & Ahmadi, Abdollah & Alenezi, Faisal Q., 2018. "Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects," Renewable Energy, Elsevier, vol. 123(C), pages 793-805.
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    8. E. Porcu & S. Castruccio & A. Alegría & P. Crippa, 2019. "Axially symmetric models for global data: A journey between geostatistics and stochastic generators," Environmetrics, John Wiley & Sons, Ltd., vol. 30(1), February.
    9. Philip A. White & Alan E. Gelfand & Eliane R. Rodrigues & Guadalupe Tzintzun, 2019. "Pollution state modelling for Mexico City," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(3), pages 1039-1060, June.
    10. Estrade, Anne & Fariñas, Alessandra & Porcu, Emilio, 2019. "Covariance functions on spheres cross time: Beyond spatial isotropy and temporal stationarity," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 1-7.
    11. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    12. J. Alan Pounds & Michael P. L. Fogden & John H. Campbell, 1999. "Biological response to climate change on a tropical mountain," Nature, Nature, vol. 398(6728), pages 611-615, April.
    13. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    14. Moreno Bevilacqua & Carlo Gaetan & Jorge Mateu & Emilio Porcu, 2012. "Estimating Space and Space-Time Covariance Functions for Large Data Sets: A Weighted Composite Likelihood Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 268-280, March.
    15. Ephrath, J. E. & Goudriaan, J. & Marani, A., 1996. "Modelling diurnal patterns of air temperature, radiation wind speed and relative humidity by equations from daily characteristics," Agricultural Systems, Elsevier, vol. 51(4), pages 377-393, August.
    16. Porcu, Emilio & Zastavnyi, Viktor, 2011. "Characterization theorems for some classes of covariance functions associated to vector valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1293-1301, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    2. Galatia Cleanthous & Emilio Porcu & Philip White, 2021. "Regularity and approximation of Gaussian random fields evolving temporally over compact two-point homogeneous spaces," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 836-860, December.
    3. Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
    4. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    5. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    6. Carlos Díaz-Avalos & Pablo Juan & Somnath Chaudhuri & Marc Sáez & Laura Serra, 2020. "Association between the New COVID-19 Cases and Air Pollution with Meteorological Elements in Nine Counties of New York State," IJERPH, MDPI, vol. 17(23), pages 1-18, December.
    7. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    8. Jorge Sicacha-Parada & Diego Pavon-Jordan & Ingelin Steinsland & Roel May & Bård Stokke & Ingar Jostein Øien, 2022. "A Spatial Modeling Framework for Monitoring Surveys with Different Sampling Protocols with a Case Study for Bird Abundance in Mid-Scandinavia," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 562-591, September.
    9. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    10. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    11. Georgios Anastasiades & Patrick McSharry, 2013. "Quantile Forecasting of Wind Power Using Variability Indices," Energies, MDPI, vol. 6(2), pages 1-34, February.
    12. Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
    13. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    14. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    15. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    16. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    17. Nico Keilman, 2020. "Evaluating Probabilistic Population Forecasts," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 520-521, pages 49-64.
    18. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    19. Marcelo Cunha & Dani Gamerman & Montserrat Fuentes & Marina Paez, 2017. "A non-stationary spatial model for temperature interpolation applied to the state of Rio de Janeiro," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 919-939, November.
    20. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:33:y:2022:i:1:n:e2701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.