IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i7p973-d1363528.html
   My bibliography  Save this article

Time Series Prediction Based on Multi-Scale Feature Extraction

Author

Listed:
  • Ruixue Zhang

    (CAD Research Center, Tongji University, Shanghai 200092, China)

  • Yongtao Hao

    (CAD Research Center, Tongji University, Shanghai 200092, China)

Abstract

Time series data are prevalent in the real world, particularly playing a crucial role in key domains such as meteorology, electricity, and finance. Comprising observations at historical time points, these data, when subjected to in-depth analysis and modeling, enable researchers to predict future trends and patterns, providing support for decision making. In current research, especially in the analysis of long time series, effectively extracting and integrating long-term dependencies with short-term features remains a significant challenge. Long-term dependencies refer to the correlation between data points spaced far apart in a time series, while short-term features focus on more recent changes. Understanding and combining these two features correctly are crucial for constructing accurate and reliable predictive models. To efficiently extract and integrate long-term dependencies and short-term features in long time series, this paper proposes a pyramid attention structure model based on multi-scale feature extraction, referred to as the MSFformer model. Initially, a coarser-scale construction module is designed to obtain coarse-grained information. A pyramid data structure is constructed through feature convolution, with the bottom layer representing the original data and each subsequent layer containing feature information extracted across different time step lengths. As a result, nodes higher up in the pyramid integrate information from more time points, such as every Monday or the beginning of each month, while nodes lower down retain their individual information. Additionally, a Skip-PAM is introduced, where a node only calculates attention with its neighboring nodes, parent node, and child nodes, effectively reducing the model’s time complexity to some extent. Notably, the child nodes refer to nodes selected from the next layer by skipping specific time steps. In this study, we not only propose an innovative time series prediction model but also validate the effectiveness of these methods through a series of comprehensive experiments. To comprehensively evaluate the performance of the designed model, we conducted comparative experiments with baseline models, ablation experiments, and hyperparameter studies. The experimental results demonstrate that the MSFformer model improves by 35.87% and 42.6% on the MAE and MSE indicators, respectively, compared to traditional Transformer models. These results highlight the outstanding performance of our proposed deep learning model in handling complex time series data, particularly in capturing long-term dependencies and integrating short-term features.

Suggested Citation

  • Ruixue Zhang & Yongtao Hao, 2024. "Time Series Prediction Based on Multi-Scale Feature Extraction," Mathematics, MDPI, vol. 12(7), pages 1-18, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:973-:d:1363528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/7/973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/7/973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    2. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Wei, 2021. "Absolute Value Constraint: The Reason for Invalid Performance Evaluation Results of Neural Network Models for Stock Price Prediction," Papers 2101.10942, arXiv.org, revised Mar 2021.
    2. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    3. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    4. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    5. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    6. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    7. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    8. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    9. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    10. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
    11. Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017. "Forecasting compositional time series: A state space approach," International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
    12. Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
    13. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    14. Jaydip Sen & Sidra Mehtab & Abhishek Dutta & Saikat Mondal, 2022. "Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model," Papers 2203.01326, arXiv.org.
    15. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    16. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    17. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    18. Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
    19. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    20. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    21. repec:cup:judgdm:v:14:y:2019:i:4:p:395-411 is not listed on IDEAS
    22. I. Yu. Zolotova & V. V. Dvorkin, 2017. "Short-term forecasting of prices for the Russian wholesale electricity market based on neural networks," Studies on Russian Economic Development, Springer, vol. 28(6), pages 608-615, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:973-:d:1363528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.