Mathematical optimization in classification and regression trees
Author
Abstract
Suggested Citation
DOI: 10.1007/s11750-021-00594-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiao Fang & Olivia R. Liu Sheng & Paulo Goes, 2013. "When Is the Right Time to Refresh Knowledge Discovered from Data?," Operations Research, INFORMS, vol. 61(1), pages 32-44, February.
- Audrone Jakaitiene & Mara Sangiovanni & Mario R. Guarracino & Panos M. Pardalos, 2016. "Multidimensional Scaling for Genomic Data," Springer Optimization and Its Applications, in: Panos M. Pardalos & Anatoly Zhigljavsky & Julius Žilinskas (ed.), Advances in Stochastic and Deterministic Global Optimization, pages 129-139, Springer.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019.
"Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2017. "Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization," Monash Econometrics and Business Statistics Working Papers 22/17, Monash University, Department of Econometrics and Business Statistics.
- Yanou Ramon & David Martens & Foster Provost & Theodoros Evgeniou, 2020. "A comparison of instance-level counterfactual explanation algorithms for behavioral and textual data: SEDC, LIME-C and SHAP-C," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 801-819, December.
- Andrea Lodi & Giulia Zarpellon, 2017. "Rejoinder on: On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 247-248, July.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017.
"Forecasting with temporal hierarchies,"
European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015. "Forecasting with Temporal Hierarchies," Monash Econometrics and Business Statistics Working Papers 16/15, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2015. "Forecasting with Temporal Hierarchies," MPRA Paper 66362, University Library of Munich, Germany.
- Jongbin Jung & Connor Concannon & Ravi Shroff & Sharad Goel & Daniel G. Goldstein, 2020. "Simple rules to guide expert classifications," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 771-800, June.
- G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
- Leo Liberti, 2020. "Rejoinder on: Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 350-357, July.
- Scornet, Erwan, 2016. "On the asymptotics of random forests," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 72-83.
- Wickramarachchi, D.C. & Robertson, B.L. & Reale, M. & Price, C.J. & Brown, J., 2016. "HHCART: An oblique decision tree," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 12-23.
- Hung-Pin Kao & Kwei Tang, 2014. "Cost-Sensitive Decision Tree Induction with Label-Dependent Late Constraints," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 238-252, May.
- Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014.
"evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
- Thomas Grubinger & Achim Zeileis & Karl-Peter Pfeiffer, 2011. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Working Papers 2011-20, Faculty of Economics and Statistics, Universität Innsbruck.
- Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
- Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
- Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
- Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018.
"Human Decisions and Machine Predictions,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
- Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2017. "Human Decisions and Machine Predictions," NBER Working Papers 23180, National Bureau of Economic Research, Inc.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
- Laura Palagi, 2019. "Global optimization issues in deep network regression: an overview," Journal of Global Optimization, Springer, vol. 73(2), pages 239-277, February.
- Carrizosa, Emilio & Olivares-Nadal, Alba V. & Ramírez-Cobo, Pepa, 2013. "Time series interpolation via global optimization of moments fitting," European Journal of Operational Research, Elsevier, vol. 230(1), pages 97-112.
- Höppner, Sebastiaan & Stripling, Eugen & Baesens, Bart & Broucke, Seppe vanden & Verdonck, Tim, 2020. "Profit driven decision trees for churn prediction," European Journal of Operational Research, Elsevier, vol. 284(3), pages 920-933.
- Dimitris Bertsimas & Allison O’Hair & Stephen Relyea & John Silberholz, 2016. "An Analytics Approach to Designing Combination Chemotherapy Regimens for Cancer," Management Science, INFORMS, vol. 62(5), pages 1511-1531, May.
- W. Nick Street, 2005. "Oblique Multicategory Decision Trees Using Nonlinear Programming," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 25-31, February.
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
- Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
- Zhiwei Fu & Bruce L. Golden & Shreevardhan Lele & S. Raghavan & Edward A. Wasil, 2003. "A Genetic Algorithm-Based Approach for Building Accurate Decision Trees," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 3-22, February.
- Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
- Veronica Piccialli & Marco Sciandrone, 2018. "Nonlinear optimization and support vector machines," 4OR, Springer, vol. 16(2), pages 111-149, June.
- Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
- Jose Pangilinan & Gerrit Janssens, 2011. "Pareto-optimality of oblique decision trees from evolutionary algorithms," Journal of Global Optimization, Springer, vol. 51(2), pages 301-311, October.
- Véronique Van Vlasselaer & Tina Eliassi-Rad & Leman Akoglu & Monique Snoeck & Bart Baesens, 2017. "GOTCHA! Network-Based Fraud Detection for Social Security Fraud," Management Science, INFORMS, vol. 63(9), pages 3090-3110, September.
- Hanif D. Sherali & Antoine G. Hobeika & Chawalit Jeenanunta, 2009. "An Optimal Constrained Pruning Strategy for Decision Trees," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 49-61, February.
- Andrea Lodi & Giulia Zarpellon, 2017. "On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 207-236, July.
- Jiaming Zeng & Berk Ustun & Cynthia Rudin, 2017. "Interpretable classification models for recidivism prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 689-722, June.
- Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
- Carrizosa, Emilio & Nogales-Gómez, Amaya & Romero Morales, Dolores, 2017. "Clustering categories in support vector machines," Omega, Elsevier, vol. 66(PA), pages 28-37.
- Kim H. & Loh W.Y., 2001. "Classification Trees With Unbiased Multiway Splits," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 589-604, June.
- Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
- Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
- Dimitris Bertsimas & Romy Shioda, 2007. "Classification and Regression via Integer Optimization," Operations Research, INFORMS, vol. 55(2), pages 252-271, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Emilio Carrizosa & Dolores Romero Morales, 2024. "Guest editorial to the Special Issue on Machine Learning and Mathematical Optimization in TOP-Transactions in Operations Research," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 351-353, October.
- Andreas Dellnitz & Andreas Kleine & Madjid Tavana, 2024. "An integrated data envelopment analysis and regression tree method for new product price estimation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1189-1211, December.
- Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Morales, Dolores Romero, 2022. "On sparse optimal regression trees," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1045-1054.
- Carrizosa, Emilio & Ramírez-Ayerbe, Jasone & Romero Morales, Dolores, 2024. "Mathematical optimization modelling for group counterfactual explanations," European Journal of Operational Research, Elsevier, vol. 319(2), pages 399-412.
- Carrizosa, Emilio & Kurishchenko, Kseniia & Marín, Alfredo & Romero Morales, Dolores, 2022. "Interpreting clusters via prototype optimization," Omega, Elsevier, vol. 107(C).
- Wu, Tsung-Hsi & Chen, Pei-Yuan & Chen, Chien-Chih & Chung, Meng-Ju & Ye, Zheng-Kai & Li, Ming-Hsu, 2024. "Classification and Regression Tree (CART)-based estimation of soil water content based on meteorological inputs and explorations of hydrodynamics behind," Agricultural Water Management, Elsevier, vol. 299(C).
- Victor Blanco & Alberto Japón & Justo Puerto, 2022. "Robust optimal classification trees under noisy labels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 155-179, March.
- Ikeda, Shunnosuke & Nishimura, Naoki & Sukegawa, Noriyoshi & Takano, Yuichi, 2023. "Prescriptive price optimization using optimal regression trees," Operations Research Perspectives, Elsevier, vol. 11(C).
- Benítez-Peña, Sandra & Carrizosa, Emilio & Guerrero, Vanesa & Jiménez-Gamero, M. Dolores & Martín-Barragán, Belén & Molero-Río, Cristina & Ramírez-Cobo, Pepa & Romero Morales, Dolores & Sillero-Denami, 2021. "On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19," European Journal of Operational Research, Elsevier, vol. 295(2), pages 648-663.
- Davila-Pena, Laura & García-Jurado, Ignacio & Casas-Méndez, Balbina, 2022. "Assessment of the influence of features on a classification problem: An application to COVID-19 patients," European Journal of Operational Research, Elsevier, vol. 299(2), pages 631-641.
- Piccialli, Veronica & Romero Morales, Dolores & Salvatore, Cecilia, 2024. "Supervised feature compression based on counterfactual analysis," European Journal of Operational Research, Elsevier, vol. 317(2), pages 273-285.
- Dimitris Bertsimas & Cheol Woo Kim, 2023. "A Prescriptive Machine Learning Approach to Mixed-Integer Convex Optimization," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1225-1241, November.
- Corrado Coppola & Lorenzo Papa & Marco Boresta & Irene Amerini & Laura Palagi, 2024. "Tuning parameters of deep neural network training algorithms pays off: a computational study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 579-620, October.
- Teddy Lazebnik & Tzach Fleischer & Amit Yaniv-Rosenfeld, 2023. "Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks," Sustainability, MDPI, vol. 15(14), pages 1-9, July.
- Fajemisin, Adejuyigbe O. & Maragno, Donato & den Hertog, Dick, 2024. "Optimization with constraint learning: A framework and survey," European Journal of Operational Research, Elsevier, vol. 314(1), pages 1-14.
- Emilio Carrizosa & Vanesa Guerrero & Dolores Romero Morales, 2023. "On mathematical optimization for clustering categories in contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 407-429, June.
- Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Carrizosa, Emilio & Ramírez-Ayerbe, Jasone & Romero Morales, Dolores, 2024. "Mathematical optimization modelling for group counterfactual explanations," European Journal of Operational Research, Elsevier, vol. 319(2), pages 399-412.
- Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Romero Morales, Dolores, 2020. "Sparsity in optimal randomized classification trees," European Journal of Operational Research, Elsevier, vol. 284(1), pages 255-272.
- Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
- Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Morales, Dolores Romero, 2022. "On sparse optimal regression trees," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1045-1054.
- Emilio Carrizosa & Dolores Romero Morales, 2024. "Guest editorial to the Special Issue on Machine Learning and Mathematical Optimization in TOP-Transactions in Operations Research," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 351-353, October.
- Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.
- Max Biggs & Rim Hariss & Georgia Perakis, 2023. "Constrained optimization of objective functions determined from random forests," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 397-415, February.
- Christophe Dutang & Quentin Guibert, 2021. "An explicit split point procedure in model-based trees allowing for a quick fitting of GLM trees and GLM forests," Post-Print hal-03448250, HAL.
- Zhexiao Lin & Fang Han, 2022. "On regression-adjusted imputation estimators of the average treatment effect," Papers 2212.05424, arXiv.org, revised Jan 2023.
- Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
- Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
- Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
- Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
- Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
- Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
- Boller, Daniel & Lechner, Michael & Okasa, Gabriel, 2021.
"The Effect of Sport in Online Dating: Evidence from Causal Machine Learning,"
Economics Working Paper Series
2104, University of St. Gallen, School of Economics and Political Science.
- Boller, Daniel & Lechner, Michael & Okasa, Gabriel, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," IZA Discussion Papers 14259, Institute of Labor Economics (IZA).
- Daniel Boller & Michael Lechner & Gabriel Okasa, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Papers 2104.04601, arXiv.org.
- Susan Athey & Julie Tibshirani & Stefan Wager, 2016.
"Generalized Random Forests,"
Papers
1610.01271, arXiv.org, revised Apr 2018.
- Athey, Susan & Tibshirani, Julie & Wager, Stefan, 2017. "Generalized Random Forests," Research Papers 3575, Stanford University, Graduate School of Business.
- Kayo Murakami & Hideki Shimada & Yoshiaki Ushifusa & Takanori Ida, 2022.
"Heterogeneous Treatment Effects Of Nudge And Rebate: Causal Machine Learning In A Field Experiment On Electricity Conservation,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1779-1803, November.
- Kayo MURAKAMI & Hideki SHIMADA & Yoshiaki USHIFUSA & Takanori IDA, 2020. "Heterogeneous Treatment Effects of Nudge and Rebate:Causal Machine Learning in a Field Experiment on Electricity Conservation," Discussion papers e-20-003, Graduate School of Economics , Kyoto University.
- De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
More about this item
Keywords
Classification and regression trees; Tree ensembles; Mixed-integer linear optimization; Continuous nonlinear optimization; Sparsity; Explainability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:29:y:2021:i:1:d:10.1007_s11750-021-00594-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.