IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/2172.html
   My bibliography  Save this article

Menedzsmentgyakorlatok és a hazai vállalatok árbevétel-változása a Covid-19 jelentette gazdasági sokk idején
[Management practices and changes in turnover of domestic firms during the Covid-19 economic shock]

Author

Listed:
  • Czakó, Erzsébet
  • Losonci, Dávid
  • Kiss-Dobronyi, Bence

Abstract

A közgazdasági kutatások egyik nagy kérdése, hogy vajon a vezetői gyakorlatok hogyan hatnak a gazdálkodó szervezetek, így a vállalatok mérhető teljesítményére. Cikkünk a koronavírus-járványhoz köthető sokk előtti menedzsmentgyakorlatok közül emeli ki azokat, amelyek a járvány korai időszakában az értékesítési árbevétel terén különösen sérülékennyé tették a hazai vállalatokat. Vállalati szintű historikus és ágazati statisztikai adatok alapján idősorelemzést használva becsüljük meg a vállalatok várható árbevételét, feltételezve, hogy a gazdasági sokkra adott reakciójuk "átlagos" volt. Ezt a becsült mutatót hasonlítjuk a ténylegesen elért árbevételhez. A menedzsmentgyakorlatok azonosítására a Versenyképesség Kutató Központ 2019. évi vállalati felmérését használjuk. A Fisher-féle egzakt próba és a Cochran-Armitage-féle trendteszt segítségével határozzuk meg azokat a vezetői gyakorlatokat, amelyek összefüggenek a várhatónál jelentősen alacsonyabb árbevétellel. Eredményeink szerint a várhatótól elmaradó árbevételű vállalatok csoportjában nagyobb arányban voltak olyanok, amelyekben a tulajdonosok részt vettek a vállalat irányításában, nem támaszkodtak külső finanszírozásra, az alkalmazottak kiválasztása nem volt kiemelt, vezetési stílusukat kevésbé jellemezte a kapcsolatorientált szemlélet, és digitalizációs felkészültségük gyengébb volt. Úgy is fogalmazhatunk: ezek a jellemzők sebezhetőbbé teszik a cégeket egy ágazatot/iparágat érintő sokkhatással szemben.

Suggested Citation

  • Czakó, Erzsébet & Losonci, Dávid & Kiss-Dobronyi, Bence, 2024. "Menedzsmentgyakorlatok és a hazai vállalatok árbevétel-változása a Covid-19 jelentette gazdasági sokk idején [Management practices and changes in turnover of domestic firms during the Covid-19 econ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 229-254.
  • Handle: RePEc:ksa:szemle:2172
    DOI: 10.18414/KSZ.2024.3.229
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=2172
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.

    File URL: https://libkey.io/10.18414/KSZ.2024.3.229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kiss, János, 2022. "Innovatívabbak-e a termelékeny és az exportáló vállalatok? Egy magyar feldolgozóipari minta elemzése [Are productive and exporting companies more innovative? Analysis of a sample of Hungarian mediu," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(4), pages 502-516.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Hector Pollitt & Richard Lewney & Bence Kiss-Dobronyi & Xinru Lin, 2021. "Modelling the economic effects of COVID-19 and possible green recovery plans: a post-Keynesian approach," Climate Policy, Taylor & Francis Journals, vol. 21(10), pages 1257-1271, November.
    4. Chikán, Attila & Czakó, Erzsébet & Kiss-Dobronyi, Bence & Losonci, Dávid, 2022. "Firm competitiveness: A general model and a manufacturing application," International Journal of Production Economics, Elsevier, vol. 243(C).
    5. Madari, Zoltán & Hartvig, Áron Dénes & Pap, Áron & Wimmer, Ágnes & Oroszné Csesznák, Anita, 2023. "A digitalizáció hatása a vállalati hozzáadott értékre Magyarországon [The effect of digitalization on corporate added value in Hungary]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 672-689.
    6. Lang, Péter & Drabancz, Áron & El-Meouch Nedim, Márton, 2021. "A koronavírus-járvány miatt bevezetett jegybanki és állami hitelprogramok hatása a magyar foglalkoztatásra [The impact of central-bank and state-loan programmes introduced in Hungarian employment d," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 930-965.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    2. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    3. Nobre, André M. & Severiano, Carlos A. & Karthik, Shravan & Kubis, Marek & Zhao, Lu & Martins, Fernando R. & Pereira, Enio B. & Rüther, Ricardo & Reindl, Thomas, 2016. "PV power conversion and short-term forecasting in a tropical, densely-built environment in Singapore," Renewable Energy, Elsevier, vol. 94(C), pages 496-509.
    4. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    5. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    6. Pinto, Jeronymo Marcondes & Marçal, Emerson Fernandes, 2019. "Cross-validation based forecasting method: a machine learning approach," Textos para discussão 498, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    7. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    8. Schipfer, Fabian & Kranzl, Lukas & Olsson, Olle & Lamers, Patrick, 2020. "The European wood pellets for heating market - Price developments, trade and market efficiency," Energy, Elsevier, vol. 212(C).
    9. Francesco Lisi & Ismail Shah, 2024. "Joint Component Estimation for Electricity Price Forecasting Using Functional Models," Energies, MDPI, vol. 17(14), pages 1-18, July.
    10. Amara-Ouali, Yvenn & Fasiolo, Matteo & Goude, Yannig & Yan, Hui, 2023. "Daily peak electrical load forecasting with a multi-resolution approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1272-1286.
    11. Croonenbroeck, Carsten & Dahl, Christian Møller, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Energy, Elsevier, vol. 73(C), pages 221-232.
    12. Svetunkov, Ivan & Chen, Huijing & Boylan, John E., 2023. "A new taxonomy for vector exponential smoothing and its application to seasonal time series," European Journal of Operational Research, Elsevier, vol. 304(3), pages 964-980.
    13. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    14. David Zendle & Catherine Flick & Elena Gordon-Petrovskaya & Nick Ballou & Leon Y. Xiao & Anders Drachen, 2023. "No evidence that Chinese playtime mandates reduced heavy gaming in one segment of the video games industry," Nature Human Behaviour, Nature, vol. 7(10), pages 1753-1766, October.
    15. Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
    16. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    17. Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
    18. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    19. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    20. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.

    More about this item

    JEL classification:

    • M21 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics - - - Business Economics
    • M1 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:2172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.