IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v39y2020i8p1179-1197.html
   My bibliography  Save this article

Modeling of frequency containment reserve prices with econometrics and artificial intelligence

Author

Listed:
  • Emil Kraft
  • Dogan Keles
  • Wolf Fichtner

Abstract

The forecasting of prices for electricity balancing reserve power can essentially improve the trading positions of market participants in competitive auctions. Having identified a lack of literature related to forecasting balancing reserve prices, we deploy approaches originating from econometrics and artificial intelligence and set up a forecasting framework based on autoregressive and exogenous factors. We use SARIMAX models as well as neural networks with different structures and forecast based on a rolling one‐step forecast with reestimation of the models. It turns out that the naive forecast performs reasonably well but is outperformed by the more advanced models. In addition, neural network approaches outperform the econometric approach in terms of forecast quality, whereas for the further use of the generated models the econometric approach has advantages in terms of explaining price drivers. For the present application, more advanced configurations of the neural networks are not able to further improve the forecasting performance.

Suggested Citation

  • Emil Kraft & Dogan Keles & Wolf Fichtner, 2020. "Modeling of frequency containment reserve prices with econometrics and artificial intelligence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1179-1197, December.
  • Handle: RePEc:wly:jforec:v:39:y:2020:i:8:p:1179-1197
    DOI: 10.1002/for.2693
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2693
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ocker, Fabian & Ehrhart, Karl-Martin & Belica, Matej, 2018. "Harmonization of the European balancing power auction: A game-theoretical and empirical investigation," Energy Economics, Elsevier, vol. 73(C), pages 194-211.
    2. Church, Keith B. & Curram, Stephen P., 1996. "Forecasting consumers' expenditure: A comparison between econometric and neural network models," International Journal of Forecasting, Elsevier, vol. 12(2), pages 255-267, June.
    3. Ilkay Oksuz & Umut Ugurlu, 2019. "Neural Network Based Model Comparison for Intraday Electricity Price Forecasting," Energies, MDPI, vol. 12(23), pages 1-14, November.
    4. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    5. Soosung Hwang & Pedro L. Valls Pereira, 2006. "Small sample properties of GARCH estimates and persistence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 473-494.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Kirsch, Laurence D. & Singh, Harry, 1995. "Pricing ancillary electric power services," The Electricity Journal, Elsevier, vol. 8(8), pages 28-36, October.
    8. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    9. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    10. Just, Sebastian & Weber, Christoph, 2008. "Pricing of reserves: Valuing system reserve capacity against spot prices in electricity markets," Energy Economics, Elsevier, vol. 30(6), pages 3198-3221, November.
    11. Gro Klaeboe & Anders Lund Eriksrud & Stein-Erik Fleten, 2013. "Benchmarking time series based forecasting models for electricity balancing market prices," Working Papers 2013-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    12. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    13. Jane Binner & Rakesh Bissoondeeal & Thomas Elger & Alicia Gazely & Andrew Mullineux, 2005. "A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia," Applied Economics, Taylor & Francis Journals, vol. 37(6), pages 665-680.
    14. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
    15. Qi, Min & Zhang, Guoqiang Peter, 2001. "An investigation of model selection criteria for neural network time series forecasting," European Journal of Operational Research, Elsevier, vol. 132(3), pages 666-680, August.
    16. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    17. Tkacz, Greg, 2001. "Neural network forecasting of Canadian GDP growth," International Journal of Forecasting, Elsevier, vol. 17(1), pages 57-69.
    18. Christian Giovanelli & Seppo Sierla & Ryutaro Ichise & Valeriy Vyatkin, 2018. "Exploiting Artificial Neural Networks for the Prediction of Ancillary Energy Market Prices," Energies, MDPI, vol. 11(7), pages 1-22, July.
    19. Bublitz, Andreas & Keles, Dogan & Fichtner, Wolf, 2017. "An analysis of the decline of electricity spot prices in Europe: Who is to blame?," Energy Policy, Elsevier, vol. 107(C), pages 323-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    2. Heilmann, Erik, 2023. "The impact of transparency policies on local flexibility markets in electric distribution networks," Utilities Policy, Elsevier, vol. 83(C).
    3. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
    4. Jiajie Tang & Jie Zhao & Hongliang Zou & Gaoyuan Ma & Jun Wu & Xu Jiang & Huaixun Zhang, 2021. "Bus Load Forecasting Method of Power System Based on VMD and Bi-LSTM," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    5. Salim Jibrin Danbatta & Asaf Varol, 2022. "ANN–polynomial–Fourier series modeling and Monte Carlo forecasting of tourism data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 920-932, August.
    6. Fraunholz, Christoph & Kraft, Emil & Keles, Dogan & Fichtner, Wolf, 2021. "Advanced price forecasting in agent-based electricity market simulation," Applied Energy, Elsevier, vol. 290(C).
    7. Zi‐yu Chen & Fei Xiao & Xiao‐kang Wang & Min‐hui Deng & Jian‐qiang Wang & Jun‐Bo Li, 2022. "Stochastic configuration network based on improved whale optimization algorithm for nonstationary time series prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1458-1482, November.
    8. Erik Heilmann, 2021. "The impact of transparency policies on local flexibility markets in electrical distribution networks: A case study with artificial neural network forecasts," MAGKS Papers on Economics 202141, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fraunholz, Christoph & Kraft, Emil & Keles, Dogan & Fichtner, Wolf, 2021. "Advanced price forecasting in agent-based electricity market simulation," Applied Energy, Elsevier, vol. 290(C).
    2. Wagner, Andreas & Ramentol, Enislay & Schirra, Florian & Michaeli, Hendrik, 2022. "Short- and long-term forecasting of electricity prices using embedding of calendar information in neural networks," Journal of Commodity Markets, Elsevier, vol. 28(C).
    3. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Umut Ugurlu & Oktay Tas & Aycan Kaya & Ilkay Oksuz, 2018. "The Financial Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-Based Generation Company," Energies, MDPI, vol. 11(8), pages 1-19, August.
    6. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    7. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    8. Ilkay Oksuz & Umut Ugurlu, 2019. "Neural Network Based Model Comparison for Intraday Electricity Price Forecasting," Energies, MDPI, vol. 12(23), pages 1-14, November.
    9. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    10. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    11. Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
    12. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
    13. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    14. Chen, Ying & Chua, Wee Song & Koch, Thorsten, 2018. "Forecasting day-ahead high-resolution natural-gas demand and supply in Germany," Applied Energy, Elsevier, vol. 228(C), pages 1091-1110.
    15. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    16. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    17. Bikeri Adline & Kazushi Ikeda, 2023. "A Hawkes Model Approach to Modeling Price Spikes in the Japanese Electricity Market," Energies, MDPI, vol. 16(4), pages 1-20, February.
    18. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    19. Abeer Alshejari & Vassilis S. Kodogiannis & Stavros Leonidis, 2020. "Development of Neurofuzzy Architectures for Electricity Price Forecasting," Energies, MDPI, vol. 13(5), pages 1-24, March.
    20. Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:39:y:2020:i:8:p:1179-1197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.