IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2012.04378.html
   My bibliography  Save this paper

Forecasting the Olympic medal distribution during a pandemic: a socio-economic machine learning model

Author

Listed:
  • Christoph Schlembach
  • Sascha L. Schmidt
  • Dominik Schreyer
  • Linus Wunderlich

Abstract

Forecasting the number of Olympic medals for each nation is highly relevant for different stakeholders: Ex ante, sports betting companies can determine the odds while sponsors and media companies can allocate their resources to promising teams. Ex post, sports politicians and managers can benchmark the performance of their teams and evaluate the drivers of success. To significantly increase the Olympic medal forecasting accuracy, we apply machine learning, more specifically a two-staged Random Forest, thus outperforming more traditional na\"ive forecast for three previous Olympics held between 2008 and 2016 for the first time. Regarding the Tokyo 2020 Games in 2021, our model suggests that the United States will lead the Olympic medal table, winning 120 medals, followed by China (87) and Great Britain (74). Intriguingly, we predict that the current COVID-19 pandemic will not significantly alter the medal count as all countries suffer from the pandemic to some extent (data inherent) and limited historical data points on comparable diseases (model inherent).

Suggested Citation

  • Christoph Schlembach & Sascha L. Schmidt & Dominik Schreyer & Linus Wunderlich, 2020. "Forecasting the Olympic medal distribution during a pandemic: a socio-economic machine learning model," Papers 2012.04378, arXiv.org, revised Jun 2021.
  • Handle: RePEc:arx:papers:2012.04378
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2012.04378
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V., 2010. "Alternative methods of predicting competitive events: An application in horserace betting markets," International Journal of Forecasting, Elsevier, vol. 26(3), pages 518-536, July.
    2. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    3. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    4. Baboota, Rahul & Kaur, Harleen, 2019. "Predictive analysis and modelling football results using machine learning approach for English Premier League," International Journal of Forecasting, Elsevier, vol. 35(2), pages 741-755.
    5. Nicolas Scelles & Wladimir Andreff & Liliane Bonnal & Madeleine Andreff & Pascal Favard, 2020. "Forecasting National Medal Totals at the Summer Olympic Games Reconsidered," Social Science Quarterly, Southwestern Social Science Association, vol. 101(2), pages 697-711, March.
    6. Forrest, David & Sanz, Ismael & Tena, J.D., 2010. "Forecasting national team medal totals at the Summer Olympic Games," International Journal of Forecasting, Elsevier, vol. 26(3), pages 576-588, July.
    7. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2018. "Forecasting With Social Media: Evidence From Tweets On Soccer Matches," Economic Inquiry, Western Economic Association International, vol. 56(3), pages 1748-1763, July.
    8. Andrew B. Bernard & Meghan R. Busse, 2004. "Who Wins the Olympic Games: Economic Resources and Medal Totals," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 413-417, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carl Singleton & J. James Reade & Johan Rewilak & Dominik Schreyer, 2021. "How big is home advantage at the Olympic Games?," Economics Discussion Papers em-dp2021-13, Department of Economics, University of Reading.
    2. Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Carl Singleton & J. James Reade & Johan Rewilak & Dominik Schreyer, 2021. "How big is home advantage at the Olympic Games?," Economics Discussion Papers em-dp2021-13, Department of Economics, University of Reading.
    3. David Forrest & J. D. Tena & Carlos Varela-Quintana, 2023. "The influence of schooling on performance in chess and at the Olympics," Empirical Economics, Springer, vol. 64(2), pages 959-982, February.
    4. Franklin G. Mixon Jr. & Richard J. Cebula, 2022. "Property Rights Freedom and Innovation: Eponymous Skills in Women's Gymnastics," Journal of Sports Economics, , vol. 23(4), pages 407-430, May.
    5. Pedro Garcia‐del‐Barrio & Carlos Gomez‐Gonzalez & José Manuel Sánchez‐Santos, 2020. "Popularity and Visibility Appraisals for Computing Olympic Medal Rankings," Social Science Quarterly, Southwestern Social Science Association, vol. 101(5), pages 2137-2157, September.
    6. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    7. Wladimir Andreff, 2012. "Is Hosting the Games Enough to Win? A predictive economic model of medal wins at 2014 Winter Olympics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00794057, HAL.
    8. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
    9. Martin Grancay & Tomas Dudas, 2018. "Olympic Medals, Economy, Geography and Politics from Sydney to Rio," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 22(2), pages 409-441, Spring.
    10. Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
    11. David Forrest & Adams Ceballos & Ramón Flores & Ian G. McHale & Ismael Sanz & J.D. Tena, 2012. "Explaining and Forecasting National Team Medals Totals at the Summer Olympic Games," Chapters, in: Wolfgang Maennig & Andrew Zimbalist (ed.), International Handbook on the Economics of Mega Sporting Events, chapter 13, Edward Elgar Publishing.
    12. Emilio Gómez-Déniz & Nancy Dávila-Cárdenes & Alejandro Leiva-Arcas & María J. Martínez-Patiño, 2021. "Measuring Efficiency in the Summer Olympic Games Disciplines: The Case of the Spanish Athletes," Mathematics, MDPI, vol. 9(21), pages 1-15, October.
    13. Yun Hyeong Choi & Qingyuan Wei & Luyao Zhang & Seong-Jin Choi, 2022. "The Impact of Cultural Distance on Performance at the Summer Olympic Games," SAGE Open, , vol. 12(1), pages 21582440221, March.
    14. Nicolas Scelles & Wladimir Andreff & Liliane Bonnal & Madeleine Andreff & Pascal Favard, 2020. "Forecasting National Medal Totals at the Summer Olympic Games Reconsidered," Social Science Quarterly, Southwestern Social Science Association, vol. 101(2), pages 697-711, March.
    15. Johan Rewilak, 2021. "The (non) determinants of Olympic success," Journal of Sports Economics, , vol. 22(5), pages 546-570, June.
    16. Wladimir Andreff, 2013. "Economic development as major determinant of Olympic medal wins: predicting performances of Russian and Chinese teams at Sochi Games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00971788, HAL.
    17. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Eike Emrich & Freya Gassmann & Christian Pierdzioch, 2017. "Are Forfeitures of Olympic Medals Predictable? – A Test of the Efficiency of the International Anti-Doping System," Economics Bulletin, AccessEcon, vol. 37(3), pages 1620-1623.
    20. Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V. & Tai, Chung-Ching & Cheah, Eng-Tuck, 2019. "Improving prediction market forecasts by detecting and correcting possible over-reaction to price movements," European Journal of Operational Research, Elsevier, vol. 272(1), pages 389-405.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2012.04378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.