IDEAS home Printed from https://ideas.repec.org/a/eee/anture/v103y2023ics0160738323001482.html
   My bibliography  Save this article

Forecasting daily tourism demand with multiple factors

Author

Listed:
  • Xu, Shilin
  • Liu, Yang
  • Jin, Chun

Abstract

Various factors have contributed to forecasting tourism demand. Although deep learning methods can achieve accurate results, they haven't considered the temporal heterogeneity of multiple factors and lack interpretability. This study proposes a novel deep learning method for daily tourism demand forecasting. Benefiting from the encoder-decoder architecture, our method adequately exploits the temporal heterogeneity of multiple factors. Based on the attentional mechanism, our method provides an interpretation of tourism demand from both factors and temporal persistence patterns. The effectiveness of our method is verified through an empirical study of two tourist attractions before and during COVID-19. Our method compensates for the uninterpretability of deep learning models, which allows tourism managers to obtain deeper insights.

Suggested Citation

  • Xu, Shilin & Liu, Yang & Jin, Chun, 2023. "Forecasting daily tourism demand with multiple factors," Annals of Tourism Research, Elsevier, vol. 103(C).
  • Handle: RePEc:eee:anture:v:103:y:2023:i:c:s0160738323001482
    DOI: 10.1016/j.annals.2023.103675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160738323001482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.annals.2023.103675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Cheng & Ge, Peng & Liu, Zhusheng & Zheng, Weimin, 2020. "Forecasting tourist arrivals using denoising and potential factors," Annals of Tourism Research, Elsevier, vol. 83(C).
    2. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    3. Zhang, Yishuo & Li, Gang & Muskat, Birgit & Vu, Huy Quan & Law, Rob, 2021. "Predictivity of tourism demand data," Annals of Tourism Research, Elsevier, vol. 89(C).
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
    6. Zheng, Weimin & Huang, Liyao & Lin, Zhibin, 2021. "Multi-attraction, hourly tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 90(C).
    7. Zhang, Yishuo & Li, Gang & Muskat, Birgit & Law, Rob & Yang, Yating, 2020. "Group pooling for deep tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 82(C).
    8. Law, Rob & Li, Gang & Fong, Davis Ka Chio & Han, Xin, 2019. "Tourism demand forecasting: A deep learning approach," Annals of Tourism Research, Elsevier, vol. 75(C), pages 410-423.
    9. José I. Castillo-Manzano & Lourdes Lopez-Valpuesta & Francisco J. Alanís, 2015. "Tourism managers' view of the economic impact of cruise traffic: the case of southern Spain," Current Issues in Tourism, Taylor & Francis Journals, vol. 18(7), pages 701-705, July.
    10. Hadavandi, Esmaeil & Ghanbari, Arash & Shahanaghi, Kamran & Abbasian-Naghneh, Salman, 2011. "Tourist arrival forecasting by evolutionary fuzzy systems," Tourism Management, Elsevier, vol. 32(5), pages 1196-1203.
    11. Bi, Jian-Wu & Li, Hui & Fan, Zhi-Ping, 2021. "Tourism demand forecasting with time series imaging: A deep learning model," Annals of Tourism Research, Elsevier, vol. 90(C).
    12. Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
    13. Li, Cheng & Zheng, Weimin & Ge, Peng, 2022. "Tourism demand forecasting with spatiotemporal features," Annals of Tourism Research, Elsevier, vol. 94(C).
    14. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    15. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    16. Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
    17. He, Ling-Yang & Li, Hui & Bi, Jian-Wu & Yang, Jing-Jing & Zhou, Qing, 2022. "The impact of public health emergencies on hotel demand - Estimation from a new foresight perspective on the COVID-19," Annals of Tourism Research, Elsevier, vol. 94(C).
    18. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    19. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    20. Van Nguyen, Truong & Zhou, Li & Chong, Alain Yee Loong & Li, Boying & Pu, Xiaodie, 2020. "Predicting customer demand for remanufactured products: A data-mining approach," European Journal of Operational Research, Elsevier, vol. 281(3), pages 543-558.
    21. Jiao, Xiaoying & Li, Gang & Chen, Jason Li, 2020. "Forecasting international tourism demand: a local spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 83(C).
    22. Kanchana Wickramasinghe & Shyama Ratnasiri, 2021. "The role of disaggregated search data in improving tourism forecasts: Evidence from Sri Lanka," Current Issues in Tourism, Taylor & Francis Journals, vol. 24(19), pages 2740-2754, October.
    23. Yang, Yang & Zhang, Honglei, 2019. "Spatial-temporal forecasting of tourism demand," Annals of Tourism Research, Elsevier, vol. 75(C), pages 106-119.
    24. Zhang, Hanyuan & Song, Haiyan & Wen, Long & Liu, Chang, 2021. "Forecasting tourism recovery amid COVID-19," Annals of Tourism Research, Elsevier, vol. 87(C).
    25. Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
    26. Jiao, Xiaoying & Chen, Jason Li & Li, Gang, 2021. "Forecasting tourism demand: Developing a general nesting spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 90(C).
    27. Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
    28. Park, Eunhye & Park, Jinah & Hu, Mingming, 2021. "Tourism demand forecasting with online news data mining," Annals of Tourism Research, Elsevier, vol. 90(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Cheng & Zheng, Weimin & Ge, Peng, 2022. "Tourism demand forecasting with spatiotemporal features," Annals of Tourism Research, Elsevier, vol. 94(C).
    2. Haodong Sun & Yang Yang & Yanyan Chen & Xiaoming Liu & Jiachen Wang, 2023. "Tourism demand forecasting of multi-attractions with spatiotemporal grid: a convolutional block attention module model," Information Technology & Tourism, Springer, vol. 25(2), pages 205-233, June.
    3. Jian-Wu Bi & Tian-Yu Han & Yanbo Yao, 2024. "Collaborative forecasting of tourism demand for multiple tourist attractions with spatial dependence: A combined deep learning model," Tourism Economics, , vol. 30(2), pages 361-388, March.
    4. Zheng, Weimin & Huang, Liyao & Lin, Zhibin, 2021. "Multi-attraction, hourly tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 90(C).
    5. Dong Zhang & Pengkun Wu & Chong Wu & Eric W. T. Ngai, 2024. "Forecasting duty-free shopping demand with multisource data: a deep learning approach," Annals of Operations Research, Springer, vol. 339(1), pages 861-887, August.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    8. Ming Yin & Feiya Lu & Xingxuan Zhuo & Wangzi Yao & Jialong Liu & Jijiao Jiang, 2024. "Prediction of daily tourism volume based on maximum correlation minimum redundancy feature selection and long short‐term memory network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 344-365, March.
    9. Bi, Jian-Wu & Li, Hui & Fan, Zhi-Ping, 2021. "Tourism demand forecasting with time series imaging: A deep learning model," Annals of Tourism Research, Elsevier, vol. 90(C).
    10. Jiao, Xiaoying & Chen, Jason Li & Li, Gang, 2021. "Forecasting tourism demand: Developing a general nesting spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 90(C).
    11. Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
    12. Li, Hengyun & Gao, Huicai & Song, Haiyan, 2023. "Tourism forecasting with granular sentiment analysis," Annals of Tourism Research, Elsevier, vol. 103(C).
    13. Chuan Zhang & Ao‐Yun Hu & Yu‐Xin Tian, 2023. "Daily tourism forecasting through a novel method based on principal component analysis, grey wolf optimizer, and extreme learning machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2121-2138, December.
    14. Yi-Chung Hu, 2023. "Tourism combination forecasting using a dynamic weighting strategy with change-point analysis," Current Issues in Tourism, Taylor & Francis Journals, vol. 26(14), pages 2357-2374, July.
    15. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    16. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    17. Yang, Yang & Fan, Yawen & Jiang, Lan & Liu, Xiaohui, 2022. "Search query and tourism forecasting during the pandemic: When and where can digital footprints be helpful as predictors?," Annals of Tourism Research, Elsevier, vol. 93(C).
    18. Liang, Xiaozhen & Hong, Chenxi & Chen, Jiaqi & Wang, Yingying & Yang, Mingge, 2024. "A hybrid forecasting architecture for air passenger demand considering search engine data and spatial effect," Journal of Air Transport Management, Elsevier, vol. 118(C).
    19. Li, Hengyun & Hu, Mingming & Li, Gang, 2020. "Forecasting tourism demand with multisource big data," Annals of Tourism Research, Elsevier, vol. 83(C).
    20. Guan, Bo & Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed, 2022. "Forecasting tourism growth with State-Dependent Models," Annals of Tourism Research, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:anture:v:103:y:2023:i:c:s0160738323001482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/annals-of-tourism-research/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.