IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v26y2017i3d10.1007_s11749-016-0519-x.html
   My bibliography  Save this article

Fast estimation of the median covariation matrix with application to online robust principal components analysis

Author

Listed:
  • Hervé Cardot

    (Université de Bourgogne Franche-Comté)

  • Antoine Godichon-Baggioni

    (Université de Bourgogne Franche-Comté)

Abstract

The geometric median covariation matrix is a robust multivariate indicator of dispersion which can be extended to infinite dimensional spaces. We define estimators, based on recursive algorithms, that can be simply updated at each new observation and are able to deal rapidly with large samples of high-dimensional data without being obliged to store all the data in memory. Asymptotic convergence properties of the recursive algorithms are studied under weak conditions in general separable Hilbert spaces. The computation of the principal components can also be performed online and this approach can be useful for online outlier detection. A simulation study clearly shows that this robust indicator is a competitive alternative to minimum covariance determinant when the dimension of the data is small and robust principal components analysis based on projection pursuit and spherical projections for high-dimension data. An illustration on a large sample and high-dimensional dataset consisting of individual TV audiences measured at a minute scale over a period of 24 h confirms the interest of considering the robust principal components analysis based on the median covariation matrix. All studied algorithms are available in the R package Gmedian on CRAN.

Suggested Citation

  • Hervé Cardot & Antoine Godichon-Baggioni, 2017. "Fast estimation of the median covariation matrix with application to online robust principal components analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 461-480, September.
  • Handle: RePEc:spr:testjl:v:26:y:2017:i:3:d:10.1007_s11749-016-0519-x
    DOI: 10.1007/s11749-016-0519-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-016-0519-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-016-0519-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
    2. Daniel Gervini, 2008. "Robust functional estimation using the median and spherical principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 587-600.
    3. Taskinen, Sara & Koch, Inge & Oja, Hannu, 2012. "Robustifying principal component analysis with spatial sign vectors," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 765-774.
    4. David Kraus & Victor M. Panaretos, 2012. "Dispersion operators and resistant second-order functional data analysis," Biometrika, Biometrika Trust, vol. 99(4), pages 813-832.
    5. Cardot, Hervé & Cénac, Peggy & Monnez, Jean-Marie, 2012. "A fast and recursive algorithm for clustering large datasets with k-medians," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1434-1449.
    6. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    7. Croux, Christophe & Ruiz-Gazen, Anne, 2005. "High breakdown estimators for principal components: the projection-pursuit approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 206-226, July.
    8. Godichon-Baggioni, Antoine, 2016. "Estimating the geometric median in Hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 209-222.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Graciela Boente & Matías Salibián-Barrera, 2021. "Robust functional principal components for sparse longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 159-188, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bali, Juan Lucas & Boente, Graciela, 2017. "Robust estimators under a functional common principal components model," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 424-440.
    2. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    3. Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
    4. Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
    5. Lee, Seokho & Shin, Hyejin & Billor, Nedret, 2013. "M-type smoothing spline estimators for principal functions," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 89-100.
    6. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "M-based simultaneous inference for the mean function of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 577-598, June.
    7. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    8. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    9. Martínez-Hernández, Israel & Genton, Marc G. & González-Farías, Graciela, 2019. "Robust depth-based estimation of the functional autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 66-79.
    10. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
    11. Graciela Boente & Matías Salibián-Barrera, 2021. "Robust functional principal components for sparse longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 159-188, August.
    12. Dürre, Alexander & Tyler, David E. & Vogel, Daniel, 2016. "On the eigenvalues of the spatial sign covariance matrix in more than two dimensions," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 80-85.
    13. Debruyne, Michiel & Hubert, Mia & Van Horebeek, Johan, 2010. "Detecting influential observations in Kernel PCA," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3007-3019, December.
    14. Xu, Yangchang & Xia, Ningning, 2023. "On the eigenvectors of large-dimensional sample spatial sign covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    15. Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    17. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "Robust simultaneous inference for the mean function of functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 785-803, September.
    18. Cheng, Guanghui & Xiong, Qiang & Lin, Ruitao, 2024. "Online bootstrap inference for the geometric median," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    19. B. Barış Alkan, 2016. "Robust Principal Component Analysis Based on Modified Minimum Covariance Determinant in the Presence of Outliers," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 4(2), pages 85-94, September.
    20. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:26:y:2017:i:3:d:10.1007_s11749-016-0519-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.