IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v34y2016i2.html
   My bibliography  Save this article

Does selection of mortality model make a difference in projecting population ageing?

Author

Listed:
  • Sergei Scherbov

    (International Institute for Applied Systems Analysis (IIASA))

  • Dalkhat Ediev

    (International Institute for Applied Systems Analysis (IIASA))

Abstract

Background: In low mortality countries, assessing future ageing depends to a large extent on scenarios of future mortality reduction at old age. Often in population projections mortality reduction is implemented via life expectancy increases that do not specify mortality change at specific age groups. The selection of models that translate life expectancy into age-specific mortality rates may be of great importance for projecting the older age groups of future populations and indicators of ageing. Objective: We quantify how the selection of mortality models, assuming similar life expectancy scenarios, affects projected indices of population ageing. Methods: Using the cohort-component method, we project the populations of Italy, Japan, Russia, Sweden, and the USA. For each country, the given scenario of life expectancy at birth is translated into age-specific death rates by applying four alternative mortality models (variants of extrapolations of the log-mortality rates, the Brass relational model, and the Bongaarts shifting model). The models are contrasted according to their produced future age-specific mortality rates, population age composition, life expectancy at age 65, age at remaining life expectancy 15 years, and conventional and prospective old-age dependency ratios. Conclusions: We show strong differences between the alternative mortality models in terms of mortality age pattern and ageing indicators. Researchers of population ageing should be as careful about their choice of model of age patterns of future mortality as about scenarios of future life expectancy. The simultaneous extrapolation of age-specific death rates may be a better alternative to projecting life expectancy first and then deriving the age patterns of mortality in the second step.

Suggested Citation

  • Sergei Scherbov & Dalkhat Ediev, 2016. "Does selection of mortality model make a difference in projecting population ageing?," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(2), pages 39-62.
  • Handle: RePEc:dem:demres:v:34:y:2016:i:2
    DOI: 10.4054/DemRes.2016.34.2
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol34/2/34-2.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2016.34.2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    2. Victor R. Fuchs, 2018. "“Though Much Is Taken”: Reflections on Aging, Health, and Medical Care," World Scientific Book Chapters, in: Health Economics and Policy Selected Writings by Victor Fuchs, chapter 33, pages 403-424, World Scientific Publishing Co. Pte. Ltd..
    3. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    4. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    5. Tim Miller, 2001. "Increasing longevity and medicare expenditures," Demography, Springer;Population Association of America (PAA), vol. 38(2), pages 215-226, May.
    6. Väinö Kannisto, 2000. "Measuring the compression of mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 3(6).
    7. John Wilmoth & Shiro Horiuchi, 1999. "Rectangularization revisited: Variability of age at death within human populations," Demography, Springer;Population Association of America (PAA), vol. 36(4), pages 475-495, November.
    8. Siu Cheung & Jean-Marie Robine & Edward Tu & Graziella Caselli, 2005. "Three dimensions of the survival curve: horizontalization, verticalization, and longevity extension," Demography, Springer;Population Association of America (PAA), vol. 42(2), pages 243-258, May.
    9. John Bongaarts, 2005. "Long-range trends in adult mortality: Models and projection methods," Demography, Springer;Population Association of America (PAA), vol. 42(1), pages 23-49, February.
    10. Wolfgang Lutz & Warren Sanderson & Sergei Scherbov, 2008. "The coming acceleration of global population ageing," Nature, Nature, vol. 451(7179), pages 716-719, February.
    11. Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
    12. Shripad Tuljapurkar & Ryan Edwards, 2011. "Variance in death and its implications for modeling and forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(21), pages 497-526.
    13. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    14. Warren C. Sanderson & Sergei Scherbov, 2013. "The Characteristics Approach to the Measurement of Population Aging," Population and Development Review, The Population Council, Inc., vol. 39(4), pages 673-685, December.
    15. Warren C. Sanderson & Sergei Scherbov, 2005. "Average remaining lifetimes can increase as human populations age," Nature, Nature, vol. 435(7043), pages 811-813, June.
    16. Les Mayhew & David Smith, 2013. "A new method of projecting populations based on trends in life expectancy and survival," Population Studies, Taylor & Francis Journals, vol. 67(2), pages 157-170, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    2. Jorge M. Uribe & Helena Chuliá & Montserrat Guillen, 2018. "Trends in the Quantiles of the Life Table Survivorship Function," European Journal of Population, Springer;European Association for Population Studies, vol. 34(5), pages 793-817, December.
    3. Ediev, Dalkhat M. & Sanderson, Warren C. & Scherbov, Sergei, 2019. "The inverse relationship between life expectancy-induced changes in the old-age dependency ratio and the prospective old-age dependency ratio," Theoretical Population Biology, Elsevier, vol. 125(C), pages 1-10.
    4. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    5. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    6. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    7. Marius D. Pascariu & Ugofilippo Basellini & José Manuel Aburto & Vladimir Canudas-Romo, 2020. "The Linear Link: Deriving Age-Specific Death Rates from Life Expectancy," Risks, MDPI, vol. 8(4), pages 1-18, October.
    8. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    9. Ugofilippo Basellini & Vladimir Canudas-Romo & Adam Lenart, 2019. "Location–Scale Models in Demography: A Useful Re-parameterization of Mortality Models," European Journal of Population, Springer;European Association for Population Studies, vol. 35(4), pages 645-673, October.
    10. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    11. Duncan Gillespie & Meredith Trotter & Shripad Tuljapurkar, 2014. "Divergence in Age Patterns of Mortality Change Drives International Divergence in Lifespan Inequality," Demography, Springer;Population Association of America (PAA), vol. 51(3), pages 1003-1017, June.
    12. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    13. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    14. Matthias Börger & Martin Genz & Jochen Ruß, 2018. "Extension, Compression, and Beyond: A Unique Classification System for Mortality Evolution Patterns," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1343-1361, August.
    15. Patrick Meyer & Gregory Ponthiere, 2020. "Human lifetime entropy in a historical perspective (1750–2014)," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 14(1), pages 129-167, January.
    16. Basellini, Ugofilippo & Kjærgaard, Søren & Camarda, Carlo Giovanni, 2020. "An age-at-death distribution approach to forecast cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 129-143.
    17. Dalkhat M. Ediev, 2013. "Decompression of Period Old-Age Mortality: When Adjusted for Bias, the Variance in the Ages at Death Shows Compression," Mathematical Population Studies, Taylor & Francis Journals, vol. 20(3), pages 137-154, July.
    18. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    19. Lucia Zanotto & Vladimir Canudas-Romo & Stefano Mazzuco, 2021. "A Mixture-Function Mortality Model: Illustration of the Evolution of Premature Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 1-27, March.
    20. A. Roger Thatcher & Siu Lan Karen Cheung & Shiro Horiuchi & Jean-Marie Robine, 2010. "The compression of deaths above the mode," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 22(17), pages 505-538.

    More about this item

    Keywords

    population aging; population projections; mortality models; forecasting ageing;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:34:y:2016:i:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.