IDEAS home Printed from https://ideas.repec.org/a/gam/jgeogr/v3y2023i3p31-609d1241528.html
   My bibliography  Save this article

Temporal Relationship between Daily Reports of COVID-19 Infections and Related GDELT and Tweet Mentions

Author

Listed:
  • Innocensia Owuor

    (Geomatics Sciences, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL 33314, USA)

  • Hartwig H. Hochmair

    (Geomatics Sciences, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL 33314, USA)

Abstract

Social media platforms are valuable data sources in the study of public reactions to events such as natural disasters and epidemics. This research assesses for selected countries around the globe the time lag between daily reports of COVID-19 cases and GDELT (Global Database of Events, Language, and Tone) and Twitter (X) COVID-19 mentions between February 2020 and April 2021 using time series analysis. Results show that GDELT articles and tweets preceded COVID-19 infections in Australia, Brazil, France, Greece, India, Italy, the U.S., Canada, Germany, and the U.K., while for Poland and the Philippines, tweets preceded and GDELT articles lagged behind COVID-19 disease incidences, respectively. This shows that the application of social media and news data for surveillance and management of pandemics needs to be assessed on a case-by-case basis for different countries. It also points towards the applicability of time series data analysis for only a limited number of countries due to strict data requirements (e.g., stationarity). A deviation from generally observed lag patterns in a country, i.e., periods with low COVID-19 infections but unusually high numbers of COVID-19-related GDELT articles or tweets, signals an anomaly. We use the seasonal hybrid extreme Studentized deviate test to detect such anomalies. This is followed by text analysis of news headlines from NewsBank and Google on the date of these anomalies to determine the probable event causing an anomaly, which includes elections, holidays, and protests.

Suggested Citation

  • Innocensia Owuor & Hartwig H. Hochmair, 2023. "Temporal Relationship between Daily Reports of COVID-19 Infections and Related GDELT and Tweet Mentions," Geographies, MDPI, vol. 3(3), pages 1-26, September.
  • Handle: RePEc:gam:jgeogr:v:3:y:2023:i:3:p:31-609:d:1241528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-7086/3/3/31/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-7086/3/3/31/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Catherine Mei Ling Wong & Olivia Jensen, 2020. "The paradox of trust: perceived risk and public compliance during the COVID-19 pandemic in Singapore," Journal of Risk Research, Taylor & Francis Journals, vol. 23(7-8), pages 1021-1030, August.
    3. repec:dau:papers:123456789/6790 is not listed on IDEAS
    4. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    5. Yunxing Yao & Yinbao Zhang & Jianzhong Liu & Yanpei Li & Xiaopei Li, 2022. "Analysis of Spatiotemporal Characteristics and Influencing Factors for the Aid Events of COVID-19 Based on GDELT," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    6. Bruno Alessandro Rivieccio & Alessandra Micheletti & Manuel Maffeo & Matteo Zignani & Alessandro Comunian & Federica Nicolussi & Silvia Salini & Giancarlo Manzi & Francesco Auxilia & Mauro Giudici & G, 2021. "CoViD-19, learning from the past: A wavelet and cross-correlation analysis of the epidemic dynamics looking to emergency calls and Twitter trends in Italian Lombardy region," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-20, February.
    7. Julien Chevallier, 2012. "Time-varying correlations in oil, gas and CO 2 prices: an application using BEKK, CCC and DCC-MGARCH models," Applied Economics, Taylor & Francis Journals, vol. 44(32), pages 4257-4274, November.
    8. Daniel E. O'Leary & Veda C. Storey, 2020. "A Google–Wikipedia–Twitter Model as a Leading Indicator of the Numbers of Coronavirus Deaths," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(3), pages 151-158, July.
    9. Jiping Cao & Hartwig H. Hochmair & Fisal Basheeh, 2022. "The Effect of Twitter App Policy Changes on the Sharing of Spatial Information through Twitter Users," Geographies, MDPI, vol. 2(3), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
    2. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    3. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    4. Bleher, Johannes & Dimpfl, Thomas, 2019. "Today I got a million, tomorrow, I don't know: On the predictability of cryptocurrencies by means of Google search volume," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 147-159.
    5. Nuri Hacıevliyagil & Krzysztof Drachal & Ibrahim Halil Eksi, 2022. "Predicting House Prices Using DMA Method: Evidence from Turkey," Economies, MDPI, vol. 10(3), pages 1-27, March.
    6. Joana M. Barros & Ruth Melia & Kady Francis & John Bogue & Mary O’Sullivan & Karen Young & Rebecca A. Bernert & Dietrich Rebholz-Schuhmann & Jim Duggan, 2019. "The Validity of Google Trends Search Volumes for Behavioral Forecasting of National Suicide Rates in Ireland," IJERPH, MDPI, vol. 16(17), pages 1-18, September.
    7. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    8. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    9. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    10. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    11. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    12. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    13. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    14. Ishani Chaudhuri & Parthajit Kayal, 2022. "Predicting Power of Ticker Search Volume in Indian Stock Market," Working Papers 2022-214, Madras School of Economics,Chennai,India.
    15. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    16. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    17. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    18. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    19. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    20. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgeogr:v:3:y:2023:i:3:p:31-609:d:1241528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.