IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v337y2023ics0306261923002775.html
   My bibliography  Save this article

Optimal dispatch of a multi-energy system microgrid under uncertainty: A renewable energy community in Austria

Author

Listed:
  • Houben, Nikolaus
  • Cosic, Armin
  • Stadler, Michael
  • Mansoor, Muhammad
  • Zellinger, Michael
  • Auer, Hans
  • Ajanovic, Amela
  • Haas, Reinhard

Abstract

Microgrids can integrate variable renewable energy sources into the energy system by controlling flexible assets locally. However, as the energy system is dynamic, an effective microgrid controller must be able to receive feedback from the system in real-time, plan ahead and take into account the active electricity tariff, to maximize the benefits to the operator. These requirements motivate the use of optimization-based control methods, such as Model Predictive Control to optimally dispatch flexible assets in microgrids. However, the major bottleneck to achieve maximum benefits with these methods is their predictive accuracy. This paper addresses this bottleneck by developing a novel multi-step forecasting method for a Model Predictive Control framework. The presented methods are applied to a real test-bed of a renewable energy community in Austria, where its operational costs and CO2 emissions are benchmarked with those of a rule-based control strategy for Flat, Time-of-Use, Demand Charge and variable energy price tariffs. In addition, the impact of forecast errors and electric battery capacity on energy community operational savings are examined. The key results indicate that the proposed controller can outperform a rule-based dispatch strategy by 24.7% in operational costs and by 8.4% in CO2 emissions through optimal operation of flexibilities if it has perfect foresight. However, if the controller is deployed in a realistic environment, where forecasts for electrical load and PV generation are required, the same savings are reduced to 3.3% for cost and 7.3% for CO2, respectively. In such environments, the proposed controller performs best in highly dynamic tariffs such as Time-of-Use and Real-time pricing rates, achieving real cost savings of up to 6.3%. These results show that the profitability of optimization-based control of microgrids is threatened by forecast errors. This motivates future research on control strategies that compensate for forecast errors in real-world operation and more accurate forecasting methods.

Suggested Citation

  • Houben, Nikolaus & Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael & Auer, Hans & Ajanovic, Amela & Haas, Reinhard, 2023. "Optimal dispatch of a multi-energy system microgrid under uncertainty: A renewable energy community in Austria," Applied Energy, Elsevier, vol. 337(C).
  • Handle: RePEc:eee:appene:v:337:y:2023:i:c:s0306261923002775
    DOI: 10.1016/j.apenergy.2023.120913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923002775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petrollese, Mario & Valverde, Luis & Cocco, Daniele & Cau, Giorgio & Guerra, José, 2016. "Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid," Applied Energy, Elsevier, vol. 166(C), pages 96-106.
    2. Unterberger, Viktor & Lichtenegger, Klaus & Kaisermayer, Valentin & Gölles, Markus & Horn, Martin, 2021. "An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems," Applied Energy, Elsevier, vol. 293(C).
    3. Kazmi, Hussain & Tao, Zhenmin, 2022. "How good are TSO load and renewable generation forecasts: Learning curves, challenges, and the road ahead," Applied Energy, Elsevier, vol. 323(C).
    4. Parisio, Alessandra & Rikos, Evangelos & Tzamalis, George & Glielmo, Luigi, 2014. "Use of model predictive control for experimental microgrid optimization," Applied Energy, Elsevier, vol. 115(C), pages 37-46.
    5. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    6. Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael, 2021. "Mixed-integer linear programming based optimization strategies for renewable energy communities," Energy, Elsevier, vol. 237(C).
    7. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    8. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    9. Gao, Feng & Chi, Hong & Shao, Xueyan, 2021. "Forecasting residential electricity consumption using a hybrid machine learning model with online search data," Applied Energy, Elsevier, vol. 300(C).
    10. Souhaib Ben Taieb & Rob J Hyndman, 2012. "Recursive and direct multi-step forecasting: the best of both worlds," Monash Econometrics and Business Statistics Working Papers 19/12, Monash University, Department of Econometrics and Business Statistics.
    11. Ignacio J. Pérez-Arriaga, Jesse D. Jenkins, and Carlos Batlle, 2017. "A regulatory framework for an evolving electricity sector: Highlights of the MIT utility of the future study," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    12. Yang, Dazhi & Wu, Elynn & Kleissl, Jan, 2019. "Operational solar forecasting for the real-time market," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1499-1519.
    13. Moser, A. & Muschick, D. & Gölles, M. & Nageler, P. & Schranzhofer, H. & Mach, T. & Ribas Tugores, C. & Leusbrock, I. & Stark, S. & Lackner, F. & Hofer, A., 2020. "A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis," Applied Energy, Elsevier, vol. 261(C).
    14. Munkhammar, Joakim & van der Meer, Dennis & Widén, Joakim, 2021. "Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model," Applied Energy, Elsevier, vol. 282(PA).
    15. Heydari, Azim & Astiaso Garcia, Davide & Keynia, Farshid & Bisegna, Fabio & De Santoli, Livio, 2019. "A novel composite neural network based method for wind and solar power forecasting in microgrids," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Liu, Ling & Wang, Jujie, 2021. "Super multi-step wind speed forecasting system with training set extension and horizontal–vertical integration neural network," Applied Energy, Elsevier, vol. 292(C).
    17. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    18. César Hernández-Hernández & Francisco Rodríguez & José Carlos Moreno & Paulo Renato Da Costa Mendes & Julio Elias Normey-Rico & José Luis Guzmán, 2017. "The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management," Energies, MDPI, vol. 10(7), pages 1-24, June.
    19. Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
    20. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    21. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    22. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    23. Zheng, Zhuang & Pan, Jia & Huang, Gongsheng & Luo, Xiaowei, 2022. "A bottom-up intra-hour proactive scheduling of thermal appliances for household peak avoiding based on model predictive control," Applied Energy, Elsevier, vol. 323(C).
    24. Gust, Gunther & Brandt, Tobias & Mashayekh, Salman & Heleno, Miguel & DeForest, Nicholas & Stadler, Michael & Neumann, Dirk, 2021. "Strategies for microgrid operation under real-world conditions," European Journal of Operational Research, Elsevier, vol. 292(1), pages 339-352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yuan & Wang, Jiangjiang & Yang, Mingxu & Xu, Hangwei, 2023. "Hybrid active and passive strategies for chance-constrained bilevel scheduling of community multi-energy system considering demand-side management and consumer psychology," Applied Energy, Elsevier, vol. 349(C).
    2. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    2. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.
    3. Umeozor, Evar Chinedu & Trifkovic, Milana, 2016. "Operational scheduling of microgrids via parametric programming," Applied Energy, Elsevier, vol. 180(C), pages 672-681.
    4. Unterberger, Viktor & Lichtenegger, Klaus & Kaisermayer, Valentin & Gölles, Markus & Horn, Martin, 2021. "An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems," Applied Energy, Elsevier, vol. 293(C).
    5. Francisco J. Vivas Fernández & Francisca Segura Manzano & José Manuel Andújar Márquez & Antonio J. Calderón Godoy, 2020. "Extended Model Predictive Controller to Develop Energy Management Systems in Renewable Source-Based Smart Microgrids with Hydrogen as Backup. Theoretical Foundation and Case Study," Sustainability, MDPI, vol. 12(21), pages 1-28, October.
    6. Pascual, Julio & Arcos-Aviles, Diego & Ursúa, Alfredo & Sanchis, Pablo & Marroyo, Luis, 2021. "Energy management for an electro-thermal renewable–based residential microgrid with energy balance forecasting and demand side management," Applied Energy, Elsevier, vol. 295(C).
    7. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Quan, Hao & Yang, Dazhi, 2020. "Probabilistic solar irradiance transposition models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    9. Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A. & Russo, G., 2023. "The role of energy communities in electricity grid balancing: A flexible tool for smart grid power distribution optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Zhang, Gang & Yang, Dazhi & Galanis, George & Androulakis, Emmanouil, 2022. "Solar forecasting with hourly updated numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. van Zyl, Corne & Ye, Xianming & Naidoo, Raj, 2024. "Harnessing eXplainable artificial intelligence for feature selection in time series energy forecasting: A comparative analysis of Grad-CAM and SHAP," Applied Energy, Elsevier, vol. 353(PA).
    12. Massaoudi, Mohamed & Refaat, Shady S. & Chihi, Ines & Trabelsi, Mohamed & Oueslati, Fakhreddine S. & Abu-Rub, Haitham, 2021. "A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting," Energy, Elsevier, vol. 214(C).
    13. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei & Aki, Hirohisa, 2016. "Operation management of residential energy-supplying networks based on optimization approaches," Applied Energy, Elsevier, vol. 183(C), pages 340-357.
    14. Srinivasan, Arvind & Wu, Raphael & Heer, Philipp & Sansavini, Giovanni, 2023. "Impact of forecast uncertainty and electricity markets on the flexibility provision and economic performance of highly-decarbonized multi-energy systems," Applied Energy, Elsevier, vol. 338(C).
    15. Abdellatif Elmouatamid & Radouane Ouladsine & Mohamed Bakhouya & Najib El Kamoun & Mohammed Khaidar & Khalid Zine-Dine, 2020. "Review of Control and Energy Management Approaches in Micro-Grid Systems," Energies, MDPI, vol. 14(1), pages 1-30, December.
    16. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    17. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Armando Castillejo-Cuberos & John Boland & Rodrigo Escobar, 2021. "Short-Term Deterministic Solar Irradiance Forecasting Considering a Heuristics-Based, Operational Approach," Energies, MDPI, vol. 14(18), pages 1-24, September.
    19. Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2018. "Predictive management of cogeneration-based energy supply networks using two-stage multi-objective optimization," Energy, Elsevier, vol. 162(C), pages 1269-1286.
    20. Zhang, Wenyu & Chen, Qian & Yan, Jianyong & Zhang, Shuai & Xu, Jiyuan, 2021. "A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:337:y:2023:i:c:s0306261923002775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.