IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v237y2014i2p738-748.html
   My bibliography  Save this article

The value of competitive information in forecasting FMCG retail product sales and the variable selection problem

Author

Listed:
  • Huang, Tao
  • Fildes, Robert
  • Soopramanien, Didier

Abstract

Sales forecasting at the UPC level is important for retailers to manage inventory. In this paper, we propose more effective methods to forecast retail UPC sales by incorporating competitive information including prices and promotions. The impact of these competitive marketing activities on the sales of the focal product has been extensively documented. However, competitive information has been surprisingly overlooked by previous studies in forecasting UPC sales, probably because of the problem of too many competitive explanatory variables. That is, each FMCG product category typically contains a large number of UPCs and is consequently associated with a large number of competitive explanatory variables. Under such a circumstance, time series models can easily become over-fitted and thus generate poor forecasting results.

Suggested Citation

  • Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2014. "The value of competitive information in forecasting FMCG retail product sales and the variable selection problem," European Journal of Operational Research, Elsevier, vol. 237(2), pages 738-748.
  • Handle: RePEc:eee:ejores:v:237:y:2014:i:2:p:738-748
    DOI: 10.1016/j.ejor.2014.02.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714001374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.02.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Foekens, Eijte W. & Leeflang, Peter S. H. & Wittink, Dick R., 1994. "A comparison and an exploration of the forecasting accuracy of a loglinear model at different levels of aggregation," International Journal of Forecasting, Elsevier, vol. 10(2), pages 245-261, September.
    2. Lee, Wing Yee & Goodwin, Paul & Fildes, Robert & Nikolopoulos, Konstantinos & Lawrence, Michael, 2007. "Providing support for the use of analogies in demand forecasting tasks," International Journal of Forecasting, Elsevier, vol. 23(3), pages 377-390.
    3. Philip Hans Franses & Rianne Legerstee, 2010. "Do experts' adjustments on model-based SKU-level forecasts improve forecast quality?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 331-340.
    4. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2012. "Model selection when there are multiple breaks," Journal of Econometrics, Elsevier, vol. 169(2), pages 239-246.
    5. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    6. Lee G. Cooper & Giovanni Giuffrida, 2000. "Turning Datamining into a Management Science Tool: New Algorithms and Empirical Results," Management Science, INFORMS, vol. 46(2), pages 249-264, February.
    7. Vincent R. Nijs & Marnik G. Dekimpe & Jan-Benedict E.M. Steenkamps & Dominique M. Hanssens, 2001. "The Category-Demand Effects of Price Promotions," Marketing Science, INFORMS, vol. 20(1), pages 1-22, September.
    8. Inseong Song & Pradeep K. Chintagunta, 2006. "Measuring Cross-Category Price Effects with Aggregate Store Data," Management Science, INFORMS, vol. 52(10), pages 1594-1609, October.
    9. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    10. Rinne, Heikki & Geurts, Michael, 1988. "A forecasting model to evaluate the profitability of price promotions," European Journal of Operational Research, Elsevier, vol. 33(3), pages 279-289, February.
    11. Bandyopadhyay, Subir, 2009. "A Dynamic Model of Cross-Category Competition: Theory, Tests and Applications," Journal of Retailing, Elsevier, vol. 85(4), pages 468-479.
    12. Chatfield, Chris, 1988. "Apples, oranges and mean square error," International Journal of Forecasting, Elsevier, vol. 4(4), pages 515-518.
    13. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    14. Konstantinos Nikolopoulos, 2010. "Forecasting with quantitative methods: the impact of special events in time series," Applied Economics, Taylor & Francis Journals, vol. 42(8), pages 947-955.
    15. Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011. "Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures," International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922.
    16. Ouyang, Yanfeng, 2007. "The effect of information sharing on supply chain stability and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1107-1121, November.
    17. Albertson, Kevin & Aylen, Jonathan, 2003. "Forecasting the behaviour of manufacturing inventory," International Journal of Forecasting, Elsevier, vol. 19(2), pages 299-311.
    18. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
    19. Raju, Jagmohan S., 1995. "Theoretical models of sales promotions: Contributions, limitations, and a future research agenda," European Journal of Operational Research, Elsevier, vol. 85(1), pages 1-17, August.
    20. Preston, John & Mercer, Alan, 1990. "The evaluation and analysis of retail sales promotions," European Journal of Operational Research, Elsevier, vol. 47(3), pages 330-338, August.
    21. Lee G. Cooper & Penny Baron & Wayne Levy & Michael Swisher & Paris Gogos, 1999. "PromoCast™: A New Forecasting Method for Promotion Planning," Marketing Science, INFORMS, vol. 18(3), pages 301-316.
    22. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    23. Alan L. Montgomery, 2005. "The implementation challenge of pricing decision support systems for retail managers," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 21(4‐5), pages 367-378, July.
    24. Foekens, E.W. & Leeflang, P.S.H. & Wittink, D.R., 1992. "Asymmetric Market Share Modelling with many Competitive Items Using Market Level Scanner Data," Papers 471, Groningen State, Institute of Economic Research-.
    25. Suresh Divakar & Brian T. Ratchford & Venkatesh Shankar, 2005. "Practice Prize Article—: A Multichannel, Multiregion Sales Forecasting Model and Decision Support System for Consumer Packaged Goods," Marketing Science, INFORMS, vol. 24(3), pages 334-350, July.
    26. Kirthi Kalyanam & Sharad Borle & Peter Boatwright, 2007. "Deconstructing Each Item's Category Contribution," Marketing Science, INFORMS, vol. 26(3), pages 327-341, 05-06.
    27. Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
    28. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    29. Koen Pauwels & Shuba Srinivasan, 2004. "Who Benefits from Store Brand Entry?," Marketing Science, INFORMS, vol. 23(3), pages 364-390, July.
    30. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    31. Andrews, Rick L. & Currim, Imran S. & Leeflang, Peter & Lim, Jooseop, 2008. "Estimating the SCAN⁎PRO model of store sales: HB, FM or just OLS?," International Journal of Research in Marketing, Elsevier, vol. 25(1), pages 22-33.
    32. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    33. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    34. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    35. Fildes, Robert, 1992. "The evaluation of extrapolative forecasting methods," International Journal of Forecasting, Elsevier, vol. 8(1), pages 81-98, June.
    36. Goodwin, Paul, 2002. "Integrating management judgment and statistical methods to improve short-term forecasts," Omega, Elsevier, vol. 30(2), pages 127-135, April.
    37. Kuo, R. J., 2001. "A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm," European Journal of Operational Research, Elsevier, vol. 129(3), pages 496-517, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shaohui & Fildes, Robert & Huang, Tao, 2016. "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information," European Journal of Operational Research, Elsevier, vol. 249(1), pages 245-257.
    2. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
    3. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    4. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    5. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    8. Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
    9. Abolghasemi, Mahdi & Hurley, Jason & Eshragh, Ali & Fahimnia, Behnam, 2020. "Demand forecasting in the presence of systematic events: Cases in capturing sales promotions," International Journal of Production Economics, Elsevier, vol. 230(C).
    10. Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
    11. Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
    12. Hewage, Harsha Chamara & Perera, H. Niles & De Baets, Shari, 2022. "Forecast adjustments during post-promotional periods," European Journal of Operational Research, Elsevier, vol. 300(2), pages 461-472.
    13. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    14. Alvarado-Valencia, Jorge & Barrero, Lope H. & Önkal, Dilek & Dennerlein, Jack T., 2017. "Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting," International Journal of Forecasting, Elsevier, vol. 33(1), pages 298-313.
    15. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
    16. Wolters, Jannik & Huchzermeier, Arnd, 2021. "Joint In-Season and Out-of-Season Promotion Demand Forecasting in a Retail Environment," Journal of Retailing, Elsevier, vol. 97(4), pages 726-745.
    17. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    18. Athanasopoulos, George & Kourentzes, Nikolaos, 2023. "On the evaluation of hierarchical forecasts," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1502-1511.
    19. Trapero, Juan R. & Pedregal, Diego J. & Fildes, R. & Kourentzes, N., 2013. "Analysis of judgmental adjustments in the presence of promotions," International Journal of Forecasting, Elsevier, vol. 29(2), pages 234-243.
    20. Fildes, Robert & Goodwin, Paul & Önkal, Dilek, 2019. "Use and misuse of information in supply chain forecasting of promotion effects," International Journal of Forecasting, Elsevier, vol. 35(1), pages 144-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:237:y:2014:i:2:p:738-748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.