IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v3y2022i2d10.1007_s43069-022-00139-7.html
   My bibliography  Save this article

SARS-CoV-2 Dissemination Using a Network of the US Counties

Author

Listed:
  • Patrick Urrutia

    (Naval Postgraduate School)

  • David Wren

    (Naval Postgraduate School)

  • Chrysafis Vogiatzis

    (University of Illinois at Urbana-Champaign)

  • Ruriko Yoshida

    (Naval Postgraduate School)

Abstract

During 2020 and 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission has been increasing among the world’s population at an alarming rate. Reducing the spread of SARS-CoV-2 and other diseases that are spread in similar manners is paramount for public health officials as they seek to effectively manage resources and potential population control measures such as social distancing and quarantines. By analyzing the US county network structure, one can model and interdict potential higher infection areas. County officials can provide targeted information, preparedness training, and increase testing the researchers conclude that traditional the researchers conclude that traditional in these areas. While these approaches may provide adequate countermeasures for localized areas, they are inadequate for the holistic USA. We solve this problem by collecting coronavirus disease 2019 (COVID-19) infections and deaths from the Center for Disease Control and Prevention, and adjacency between all counties obtained from the United States Census Bureau. Generalized network autoregressive (GNAR) time series models have been proposed as an efficient learning algorithm for networked datasets. This work fuses network science and operations research techniques to univariately model COVID-19 cases, deaths, and current survivors across the US county network structure.

Suggested Citation

  • Patrick Urrutia & David Wren & Chrysafis Vogiatzis & Ruriko Yoshida, 2022. "SARS-CoV-2 Dissemination Using a Network of the US Counties," SN Operations Research Forum, Springer, vol. 3(2), pages 1-23, June.
  • Handle: RePEc:spr:snopef:v:3:y:2022:i:2:d:10.1007_s43069-022-00139-7
    DOI: 10.1007/s43069-022-00139-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-022-00139-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-022-00139-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spyros Makridakis & Robert L. Winkler, 1983. "Averages of Forecasts: Some Empirical Results," Management Science, INFORMS, vol. 29(9), pages 987-996, September.
    2. Jürgen Hackl & Thibaut Dubernet, 2019. "Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models," Future Internet, MDPI, vol. 11(4), pages 1-14, April.
    3. Sarlas, Georgios & Páez, Antonio & Axhausen, Kay W., 2020. "Betweenness-accessibility: Estimating impacts of accessibility on networks," Journal of Transport Geography, Elsevier, vol. 84(C).
    4. Rob J. Hyndman, 2006. "Another Look at Forecast Accuracy Metrics for Intermittent Demand," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 4, pages 43-46, June.
    5. Silva, Petrônio C.L. & Batista, Paulo V.C. & Lima, Hélder S. & Alves, Marcos A. & Guimarães, Frederico G. & Silva, Rodrigo C.P., 2020. "COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Sun, Xiaoqian & Wandelt, Sebastian & Zhang, Anming, 2021. "On the degree of synchronization between air transport connectivity and COVID-19 cases at worldwide level," Transport Policy, Elsevier, vol. 105(C), pages 115-123.
    7. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    8. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    9. Ulrich Nguemdjo & Freeman Meno & Audric Dongfack & Bruno Ventelou, 2020. "Simulating the progression of the COVID-19 disease in Cameroon using SIR models," Post-Print hal-02941632, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasiliki Mebelli & Maria Drakaki & Panagiotis Tzionas, 2023. "An Investigation of Time Series Models for Forecasting Mixed Migration Flows: Focusing in Germany," SN Operations Research Forum, Springer, vol. 4(2), pages 1-11, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    2. Mingke Xie & Yang Chen & Luliang Tang, 2022. "Exploring the Impact of Localized COVID-19 Events on Intercity Mobility during the Normalized Prevention and Control Period in China," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    3. Meng, Xin & Guo, Mingxue & Gao, Ziyou & Yang, Zhenzhen & Yuan, Zhilu & Kang, Liujiang, 2022. "The effects of Wuhan highway lockdown measures on the spread of COVID-19 in China," Transport Policy, Elsevier, vol. 117(C), pages 169-180.
    4. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    5. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    6. Bart Roelofs & Dimitris Ballas & Hinke Haisma & Arjen Edzes, 2022. "Spatial mobility patterns and COVID‐19 incidence: A regional analysis of the second wave in the Netherlands," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(S1), pages 21-40, November.
    7. Bilgili, Faik, 2002. "VAR, ARIMA, Üstsel Düzleme, Karma ve İlave-Faktör Yöntemlerinin Özel Tüketim Harcamalarına ait Ex Post Öngörü Başarılarının Karşılaştırılması [A Comparison of Ex-Post Forecast Accuracies for VAR, A," MPRA Paper 75536, University Library of Munich, Germany, revised 2002.
    8. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    9. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    10. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    11. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    12. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
    13. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Lei Che & Jiangang Xu & Hong Chen & Dongqi Sun & Bao Wang & Yunuo Zheng & Xuedi Yang & Zhongren Peng, 2022. "Evaluation of the Spatial Effect of Network Resilience in the Yangtze River Delta: An Integrated Framework for Regional Collaboration and Governance under Disruption," Land, MDPI, vol. 11(8), pages 1-20, August.
    15. Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
    16. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
    17. Andrew J. Curtis & Jayakrishnan Ajayakumar & Jacqueline Curtis & Sam Brown, 2022. "Spatial Syndromic Surveillance and COVID-19 in the U.S.: Local Cluster Mapping for Pandemic Preparedness," IJERPH, MDPI, vol. 19(15), pages 1-15, July.
    18. Srinivas Bollapragada & Salil Gupta & Brett Hurwitz & Paul Miles & Rajesh Tyagi, 2008. "NBC-Universal Uses a Novel Qualitative Forecasting Technique to Predict Advertising Demand," Interfaces, INFORMS, vol. 38(2), pages 103-111, April.
    19. Liu, Li-Jing & Yao, Yun-Fei & Liang, Qiao-Mei & Qian, Xiang-Yan & Xu, Chun-Lei & Wei, Si-Yi & Creutzig, Felix & Wei, Yi-Ming, 2021. "Combining economic recovery with climate change mitigation: A global evaluation of financial instruments," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 438-453.
    20. Munazza Fatima & Kara J. O’Keefe & Wenjia Wei & Sana Arshad & Oliver Gruebner, 2021. "Geospatial Analysis of COVID-19: A Scoping Review," IJERPH, MDPI, vol. 18(5), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:3:y:2022:i:2:d:10.1007_s43069-022-00139-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.