IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5301-d426648.html
   My bibliography  Save this article

Comparative Study of Physics-Based Modeling and Neural Network Approach to Predict Cooling in Vehicle Integrated Thermal Management System

Author

Listed:
  • Duwon Choi

    (Department of Mechanical Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Gyeonggi, Korea
    Vehicle Calibration Team, Tenergy, 145 Gwanggyo-ro, Yeongtong-gu, Suwon 16229, Gyeonggi, Korea
    These authors contributed equally to this work.)

  • Youngkuk An

    (Department of Mechanical Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Gyeonggi, Korea
    These authors contributed equally to this work.)

  • Nankyu Lee

    (Vehicle Calibration Team, Tenergy, 145 Gwanggyo-ro, Yeongtong-gu, Suwon 16229, Gyeonggi, Korea)

  • Jinil Park

    (Department of Mechanical Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Gyeonggi, Korea)

  • Jonghwa Lee

    (Department of Mechanical Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Gyeonggi, Korea)

Abstract

Vehicle integrated thermal management system (VTMS) is an important technology used for improving the energy efficiency of vehicles. Physics-based modeling is widely used to predict the energy flow in such systems. However, physics-based modeling requires several experimental approaches to get the required parameters. The experimental approach to obtain these parameters is expensive and requires great effort to configure a separate experimental device and conduct the experiment. Therefore, in this study, a neural network (NN) approach is applied to reduce the cost and effort necessary to develop a VTMS. The physics-based modeling is also analyzed and compared with recent NN techniques, such as ConvLSTM and temporal convolutional network (TCN), to confirm the feasibility of the NN approach at EPA Federal Test Procedure (FTP-75), Highway Fuel Economy Test cycle (HWFET), Worldwide harmonized Light duty driving Test Cycle (WLTC) and actual on-road driving conditions. TCN performed the best among the tested models and was easier to build than physics-based modeling. For validating the two different approaches, the physical properties of a 1 L class passenger car with an electric control valve are measured. The NN model proved to be effective in predicting the characteristics of a vehicle cooling system. The proposed method will reduce research costs in the field of predictive control and VTMS design.

Suggested Citation

  • Duwon Choi & Youngkuk An & Nankyu Lee & Jinil Park & Jonghwa Lee, 2020. "Comparative Study of Physics-Based Modeling and Neural Network Approach to Predict Cooling in Vehicle Integrated Thermal Management System," Energies, MDPI, vol. 13(20), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5301-:d:426648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5301/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5301/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Briggs, Ian & Murtagh, Martin & Kee, Robert & McCulloug, Geoffrey & Douglas, Roy, 2017. "Sustainable non-automotive vehicles: The simulation challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 840-851.
    2. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    3. Zahid, Taimoor & Xu, Kun & Li, Weimin & Li, Chenming & Li, Hongzhe, 2018. "State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles," Energy, Elsevier, vol. 162(C), pages 871-882.
    4. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting," Energies, MDPI, vol. 11(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenbin Su & Wei Ren & Hui Sun & Canjie Liu & Xuhao Lu & Yingli Hua & Hongbo Wei & Han Jia, 2022. "Data-Based Flow Rate Prediction Models for Independent Metering Hydraulic Valve," Energies, MDPI, vol. 15(20), pages 1-12, October.
    2. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    3. Kibok Kim & Jinil Park & Jonghwa Lee, 2021. "Fuel Economy Improvement of Urban Buses with Development of an Eco-Drive Scoring Algorithm Using Machine Learning," Energies, MDPI, vol. 14(15), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.
    2. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
    3. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    4. Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
    5. OlaOluwa S. Yaya & Ahamuefula E. Ogbonna & Fumitaka Furuoka & Luis A. Gil‐Alana, 2021. "A New Unit Root Test for Unemployment Hysteresis Based on the Autoregressive Neural Network," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 960-981, August.
    6. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    7. Man Li & Tao Ye & Peijun Shi & Jian Fang, 2015. "Impacts of the global economic crisis and Tohoku earthquake on Sino–Japan trade: a comparative perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 541-556, January.
    8. Caglar, Abdullah Emre & Daştan, Muhammet & Avci, Salih Bortecine, 2024. "Persistence of disaggregate energy RD&D expenditures in top-five economies: Evidence from artificial neural network approach," Applied Energy, Elsevier, vol. 365(C).
    9. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    10. Anna Staszewska-Bystrova & Peter Winker, 2016. "Improved bootstrap prediction intervals for SETAR models," Statistical Papers, Springer, vol. 57(1), pages 89-98, March.
    11. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    12. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    13. Ren, Simiao & Hu, Wayne & Bradbury, Kyle & Harrison-Atlas, Dylan & Malaguzzi Valeri, Laura & Murray, Brian & Malof, Jordan M., 2022. "Automated Extraction of Energy Systems Information from Remotely Sensed Data: A Review and Analysis," Applied Energy, Elsevier, vol. 326(C).
    14. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    15. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    16. Goodwin, Paul & Önkal, Dilek & Thomson, Mary, 2010. "Do forecasts expressed as prediction intervals improve production planning decisions?," European Journal of Operational Research, Elsevier, vol. 205(1), pages 195-201, August.
    17. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    18. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    19. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    20. Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E. & Fildes, Robert & Goodwin, Paul, 2009. "The effects of integrating management judgement into intermittent demand forecasts," International Journal of Production Economics, Elsevier, vol. 118(1), pages 72-81, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5301-:d:426648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.