A holistic time series-based energy benchmarking framework for applications in large stocks of buildings
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.122550
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Zigui Jiang & Rongheng Lin & Fangchun Yang, 2018. "A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data," Energies, MDPI, vol. 11(9), pages 1-19, August.
- Xing Shi & Binghui Si & Jiangshan Zhao & Zhichao Tian & Chao Wang & Xing Jin & Xin Zhou, 2019. "Magnitude, Causes, and Solutions of the Performance Gap of Buildings: A Review," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
- Park, June Young & Yang, Xiya & Miller, Clayton & Arjunan, Pandarasamy & Nagy, Zoltan, 2019. "Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset," Applied Energy, Elsevier, vol. 236(C), pages 1280-1295.
- Haas, Reinhard, 1997. "Energy efficiency indicators in the residential sector : What do we know and what has to be ensured?," Energy Policy, Elsevier, vol. 25(7-9), pages 789-802.
- Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
- Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
- Alexander Martin Tureczek & Per Sieverts Nielsen, 2017. "Structured Literature Review of Electricity Consumption Classification Using Smart Meter Data," Energies, MDPI, vol. 10(5), pages 1-19, April.
- Papadopoulos, Sokratis & Kontokosta, Constantine E., 2019. "Grading buildings on energy performance using city benchmarking data," Applied Energy, Elsevier, vol. 233, pages 244-253.
- Roth, Jonathan & Lim, Benjamin & Jain, Rishee K. & Grueneich, Dian, 2020. "Examining the feasibility of using open data to benchmark building energy usage in cities: A data science and policy perspective," Energy Policy, Elsevier, vol. 139(C).
- Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
- Jang, Dongsik & Eom, Jiyong & Jae Park, Min & Jeung Rho, Jae, 2016. "Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers," Energy Policy, Elsevier, vol. 88(C), pages 11-26.
- Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
- Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
- Miller, Clayton & Nagy, Zoltán & Schlueter, Arno, 2018. "A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1365-1377.
- Piscitelli, Marco Savino & Brandi, Silvio & Capozzoli, Alfonso, 2019. "Recognition and classification of typical load profiles in buildings with non-intrusive learning approach," Applied Energy, Elsevier, vol. 255(C).
- Chung, William & Hui, Y.V. & Lam, Y. Miu, 2006. "Benchmarking the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 83(1), pages 1-14, January.
- Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Data-driven framework towards realistic bottom-up energy benchmarking using an Artificial Neural Network," Applied Energy, Elsevier, vol. 306(PA).
- Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
- Cai, Wei & Wen, Xiaodong & Li, Chaoen & Shao, Jingjing & Xu, Jianguo, 2023. "Predicting the energy consumption in buildings using the optimized support vector regression model," Energy, Elsevier, vol. 273(C).
- Luo, Xuan & Hong, Tianzhen & Chen, Yixing & Piette, Mary Ann, 2017. "Electric load shape benchmarking for small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 715-725.
- Girolama Airò Farulla & Giovanni Tumminia & Francesco Sergi & Davide Aloisio & Maurizio Cellura & Vincenzo Antonucci & Marco Ferraro, 2021. "A Review of Key Performance Indicators for Building Flexibility Quantification to Support the Clean Energy Transition," Energies, MDPI, vol. 14(18), pages 1-19, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrews, Abigail & Jain, Rishee K., 2022. "Beyond Energy Efficiency: A clustering approach to embed demand flexibility into building energy benchmarking," Applied Energy, Elsevier, vol. 327(C).
- Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
- Li, Tian & Bie, Haipei & Lu, Yi & Sawyer, Azadeh Omidfar & Loftness, Vivian, 2024. "MEBA: AI-powered precise building monthly energy benchmarking approach," Applied Energy, Elsevier, vol. 359(C).
- Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
- Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Data-driven framework towards realistic bottom-up energy benchmarking using an Artificial Neural Network," Applied Energy, Elsevier, vol. 306(PA).
- Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
- Wang, Ning & Wen, Zongguo & Liu, Mingqi & Guo, Jie, 2016. "Constructing an energy efficiency benchmarking system for coal production," Applied Energy, Elsevier, vol. 169(C), pages 301-308.
- Salah Vaisi & Saleh Mohammadi & Benedetto Nastasi & Kavan Javanroodi, 2020. "A New Generation of Thermal Energy Benchmarks for University Buildings," Energies, MDPI, vol. 13(24), pages 1-18, December.
- Claudio Caromba & Corné Schutte & Jean van Laar, 2023. "Application of Clustering Techniques for Improved Energy Benchmarking on Deep-Level Mines," Energies, MDPI, vol. 16(19), pages 1-18, September.
- Chung, William & Yeung, Iris M.H., 2017. "Benchmarking by convex non-parametric least squares with application on the energy performance of office buildings," Applied Energy, Elsevier, vol. 203(C), pages 454-462.
- Arjunan, Pandarasamy & Poolla, Kameshwar & Miller, Clayton, 2020. "EnergyStar++: Towards more accurate and explanatory building energy benchmarking," Applied Energy, Elsevier, vol. 276(C).
- Park, June Young & Yang, Xiya & Miller, Clayton & Arjunan, Pandarasamy & Nagy, Zoltan, 2019. "Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset," Applied Energy, Elsevier, vol. 236(C), pages 1280-1295.
- Park, Hyo Seon & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon & Jeong, Jaewook, 2016. "Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques," Applied Energy, Elsevier, vol. 173(C), pages 225-237.
- Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
- Jonathan Roth & Jayashree Chadalawada & Rishee K. Jain & Clayton Miller, 2021. "Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification," Energies, MDPI, vol. 14(5), pages 1-22, March.
- Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
- Yu, Xinran & Ergan, Semiha & Dedemen, Gokmen, 2019. "A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
- Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
More about this item
Keywords
External energy benchmarking; Building energy performance; Time series analytics; Peer identification; Key performance indicators;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923019141. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.