IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p959-d370265.html
   My bibliography  Save this article

A Hybrid Predictive Approach for Chromium Layer Thickness in the Hard Chromium Plating Process Based on the Differential Evolution/Gradient Boosted Regression Tree Methodology

Author

Listed:
  • Paulino José Garcia Nieto

    (Department of Mathematics, Faculty of Sciences, University of Oviedo, c/Federico García Lorca 18, 33007 Oviedo, Spain)

  • Esperanza García Gonzalo

    (Department of Mathematics, Faculty of Sciences, University of Oviedo, c/Federico García Lorca 18, 33007 Oviedo, Spain)

  • Fernando Sanchez Lasheras

    (Department of Mathematics, Faculty of Sciences, University of Oviedo, c/Federico García Lorca 18, 33007 Oviedo, Spain)

  • Antonio Bernardo Sánchez

    (Department of Mining Technology, Topography and Structures, University of León, 24071 León, Spain)

Abstract

The purpose of the industrial process of chromium plating is the creation of a hard and wear-resistant layer of chromium over a metallic surface. One of the main properties of chromium plating is its resistance to both wear and corrosion. This research presents an innovative nonparametric machine learning approach that makes use of a hybrid gradient boosted regression tree (GBRT) methodology for hard chromium layer thickness prediction. GBRT is a non-parametric statistical learning technique that produces a prediction model in the form of an ensemble of weak prediction models. The motivation for boosting is a procedure that combines the output of many weak classifiers to produce a powerful committee. In this study, the GBRT hyperparameters were optimized with the help of differential evolution (DE). DE is an optimization technique within evolutionary computing. The results found that this model was able to predict the thickness of the chromium layer formed in this industrial process with a determination coefficient equal to 0.9842 and a root-mean-square error value of 0.01590. The two most important variables of the model were the time of the hard-chromium process and the thickness of the layer removed by electropolishing. Thus, these results provide a foundation for an accurate predictive model of hard chromium layer thickness. The derived model also allowed the ranking of the importance of the independent input variables that were examined. Finally, the high performance and simplicity of the model make the DE/GBRT method attractive compared to conventional forecasting techniques.

Suggested Citation

  • Paulino José Garcia Nieto & Esperanza García Gonzalo & Fernando Sanchez Lasheras & Antonio Bernardo Sánchez, 2020. "A Hybrid Predictive Approach for Chromium Layer Thickness in the Hard Chromium Plating Process Based on the Differential Evolution/Gradient Boosted Regression Tree Methodology," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:959-:d:370265
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben Taieb, Souhaib & Hyndman, Rob J., 2014. "A gradient boosting approach to the Kaggle load forecasting competition," International Journal of Forecasting, Elsevier, vol. 30(2), pages 382-394.
    2. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    3. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Hu & Jianfeng Zhang & Tao Li, 2021. "A Novel Hybrid Decompose-Ensemble Strategy with a VMD-BPNN Approach for Daily Streamflow Estimating," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5119-5138, December.
    2. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    3. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    4. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    5. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    6. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    7. Emrich Eike & Pierdzioch Christian, 2016. "Public Goods, Private Consumption, and Human Capital: Using Boosted Regression Trees to Model Volunteer Labour Supply," Review of Economics, De Gruyter, vol. 67(3), pages 263-283, December.
    8. Lauri Nevasalmi, 2022. "Recession forecasting with high‐dimensional data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 752-764, July.
    9. Lahiri, Kajal & Yang, Cheng, 2022. "Boosting tax revenues with mixed-frequency data in the aftermath of COVID-19: The case of New York," International Journal of Forecasting, Elsevier, vol. 38(2), pages 545-566.
    10. Pierdzioch Christian & Gupta Rangan, 2020. "Uncertainty and Forecasts of U.S. Recessions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-20, September.
    11. Yahia Mutalib Tofiq & Sarmad Dashti Latif & Ali Najah Ahmed & Pavitra Kumar & Ahmed El-Shafie, 2022. "Optimized Model Inputs Selections for Enhancing River Streamflow Forecasting Accuracy Using Different Artificial Intelligence Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5999-6016, December.
    12. Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
    13. María Carmen Ruiz-Abellón & Luis Alfredo Fernández-Jiménez & Antonio Guillamón & Alberto Falces & Ana García-Garre & Antonio Gabaldón, 2019. "Integration of Demand Response and Short-Term Forecasting for the Management of Prosumers’ Demand and Generation," Energies, MDPI, vol. 13(1), pages 1-31, December.
    14. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    15. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    16. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    17. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    18. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    19. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    20. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:959-:d:370265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.