Is there a role for statistics in artificial intelligence?
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-021-00455-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Bühlmann, Peter & van de Geer, Sara, 2018. "Statistics for big data: A perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 37-41.
- Xiao-Li Meng & Xianchao Xie, 2014. "I Got More Data, My Model is More Refined, but My Estimator is Getting Worse! Am I Just Dumb?," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 218-250, June.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- C. Glenn Begley & Lee M. Ellis, 2012. "Raise standards for preclinical cancer research," Nature, Nature, vol. 483(7391), pages 531-533, March.
- Duflo, Esther & Glennerster, Rachel & Kremer, Michael, 2008.
"Using Randomization in Development Economics Research: A Toolkit,"
Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 61, pages 3895-3962,
Elsevier.
- Esther Duflo & Rachel Glennerster & Michael Kremer, 2006. "Using Randomization in Development Economics Research: A Toolkit," CID Working Papers 138, Center for International Development at Harvard University.
- Kremer, Michael & Glennerster, Rachel & Duflo, Esther, 2007. "Using Randomization in Development Economics Research: A Toolkit," CEPR Discussion Papers 6059, C.E.P.R. Discussion Papers.
- Esther Duflo & Rachel Glennerster & Michael Kremer, 2006. "Using Randomization in Development Economics Research: A Toolkit," NBER Technical Working Papers 0333, National Bureau of Economic Research, Inc.
- Rosenbaum, Paul R., 2010. "Design Sensitivity and Efficiency in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 692-702.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019.
"Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2017. "Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization," Monash Econometrics and Business Statistics Working Papers 22/17, Monash University, Department of Econometrics and Business Statistics.
- Brian E. Roe & David R. Just, 2009. "Internal and External Validity in Economics Research: Tradeoffs between Experiments, Field Experiments, Natural Experiments, and Field Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(5), pages 1266-1271.
- James J. Heckman, 2001. "Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture," Journal of Political Economy, University of Chicago Press, vol. 109(4), pages 673-748, August.
- D. Dobler & J. Beyersmann & M. Pauly, 2017. "Non-strange weird resampling for complex survival data," Biometrika, Biometrika Trust, vol. 104(3), pages 699-711.
- Athey, Susan & Imbens, Guido W., 2015. "Machine Learning for Estimating Heterogeneous Causal Effects," Research Papers 3350, Stanford University, Graduate School of Business.
- Braver, Sanford L. & Smith, Melanie C., 1996. "Maximizing both external and internal validity in longitudinal true experiments with voluntary treatments: The "combined modified" design," Evaluation and Program Planning, Elsevier, vol. 19(4), pages 287-300, November.
- Dunson, David B., 2018. "Statistics in the big data era: Failures of the machine," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 4-9.
- Vanessa Didelez, 2007. "Graphical Models for Composable Finite Markov Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 169-185, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Greenstone, Michael & Gayer, Ted, 2009.
"Quasi-experimental and experimental approaches to environmental economics,"
Journal of Environmental Economics and Management, Elsevier, vol. 57(1), pages 21-44, January.
- Michael Greenstone & Ted Gayer, 2007. "Quasi-Experimental and Experimental Approaches to Environmental Economics," Working Papers 0713, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
- Jörg Peters & Jörg Langbein & Gareth Roberts, 2018.
"Generalization in the Tropics – Development Policy, Randomized Controlled Trials, and External Validity,"
The World Bank Research Observer, World Bank, vol. 33(1), pages 34-64.
- Peters, Jörg & Langbein, Jörg & Roberts, Gareth, 2017. "Generalization in the Tropics: Development policy, randomized controlled trials, and external validity," Ruhr Economic Papers 716, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Burgess, Simon & Metcalfe, Robert & Sadoff, Sally, 2021.
"Understanding the response to financial and non-financial incentives in education: Field experimental evidence using high-stakes assessments,"
Economics of Education Review, Elsevier, vol. 85(C).
- Burgess, Simon & Metcalfe, Robert & Sadoff, Sally, 2016. "Understanding the Response to Financial and Non-Financial Incentives in Education: Field Experimental Evidence Using High-Stakes Assessments," IZA Discussion Papers 10284, Institute of Labor Economics (IZA).
- Simon Burgess & Robert Metcalfe & Sally Sadoff, 2016. "Understanding the Response to Financial and Non-Financial Incentives in Education: Field Experimental Evidence Using High-Stakes Assessments," Bristol Economics Discussion Papers 16/678, School of Economics, University of Bristol, UK.
- Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
- Guido W. Imbens, 2020.
"Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
- Guido Imbens, 2019. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," NBER Working Papers 26104, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Mert Demirer & Esther Duflo & Iv'an Fern'andez-Val, 2017.
"Fisher-Schultz Lecture: Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments, with an Application to Immunization in India,"
Papers
1712.04802, arXiv.org, revised Oct 2023.
- Victor Chernozhukov & Mert Demirer & Esther Duflo & Iván Fernández-Val, 2023. "Fischer-Schultz Lecture: Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments, with an Application to Immunization in India," Working Papers hal-04238425, HAL.
- Salomo Hirvonen & Maarit Lassander & Lauri Sääksvuori & Janne Tukiainen, 2023. "Who is mobilized to vote by short text messages? Evidence from a nationwide field experiment with young voters," Discussion Papers 157, Aboa Centre for Economics.
- Maria Nareklishvili & Nicholas Polson & Vadim Sokolov, 2022. "Feature Selection for Personalized Policy Analysis," Papers 2301.00251, arXiv.org, revised Jul 2023.
- Victor Chernozhukov & Mert Demirer & Esther Duflo & Ivan Fernandez-Val, 2017.
"Generic machine learning inference on heterogenous treatment effects in randomized experiments,"
CeMMAP working papers
61/17, Institute for Fiscal Studies.
- Victor Chernozhukov & Mert Demirer & Esther Duflo & Ivan Fernandez-Val, 2017. "Generic machine learning inference on heterogenous treatment effects in randomized experiments," CeMMAP working papers CWP61/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Liesbeth Colen & Sergio Gomez y Paloma & Uwe Latacz-Lohmann & Marianne Lefebvre & Raphaële Préget & Sophie Thoyer, 2016.
"Economic Experiments as a Tool for Agricultural Policy Evaluation: Insights from the European CAP,"
Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(4), pages 667-694, December.
- Liesbeth Colen & Sergio Gomez-Y-Paloma & Uwe Latacz-Lohmann & Marianne Lefebvre & Raphaële Préget & Sophie Thoyer, 2015. "Economic experiments as a tool for agricultural policy evaluation: insights from the European CAP," Post-Print hal-02743124, HAL.
- Liesbeth Colen & Sergio Gomez y Paloma & Uwe Latacz-Lohmann & Marianne Lefebvre & Raphaële Préget & Sophie Thoyer, 2016. "Economic Experiments as a Tool for Agricultural Policy Evaluation: Insights from the European CAP," Post-Print hal-01416121, HAL.
- Escobari, Diego & Hoover, Gary A., 2024. "Late-Arriving Votes and Electoral Fraud: A Natural Experiment and Regression Discontinuity Evidence from Bolivia," World Development, Elsevier, vol. 173(C).
- Asresu Yitayew & Awudu Abdulai & Yigezu A Yigezu, 2022. "Improved agricultural input delivery systems for enhancing technology adoption: evidence from a field experiment in Ethiopia," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(3), pages 527-556.
- Tatsushi Oka & Shota Yasui & Yuta Hayakawa & Undral Byambadalai, 2024. "Regression Adjustment for Estimating Distributional Treatment Effects in Randomized Controlled Trials," Papers 2407.14074, arXiv.org.
- Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
- Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
- 'Agoston Reguly, 2021. "Heterogeneous Treatment Effects in Regression Discontinuity Designs," Papers 2106.11640, arXiv.org, revised Oct 2021.
More about this item
Keywords
Statistics; Artificial intelligence; Machine learning; Data science;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:16:y:2022:i:4:d:10.1007_s11634-021-00455-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.