IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v7y2023i10d10.1038_s41562-023-01669-8.html
   My bibliography  Save this article

No evidence that Chinese playtime mandates reduced heavy gaming in one segment of the video games industry

Author

Listed:
  • David Zendle

    (University of York)

  • Catherine Flick

    (De Montfort University)

  • Elena Gordon-Petrovskaya

    (University of York)

  • Nick Ballou

    (Queen Mary University of London)

  • Leon Y. Xiao

    (IT University of Copenhagen)

  • Anders Drachen

    (University of York
    University of Southern Denmark)

Abstract

Governments around the world are considering regulatory measures to reduce young people’s time spent on digital devices, particularly video games. This raises the question of whether proposed regulatory measures would be effective. Since the early 2000s, the Chinese government has been enacting regulations to directly restrict young people’s playtime. In November 2019, it limited players aged under 18 to 1.5 hours of daily playtime and 3 hours on public holidays. Using telemetry data on over seven billion hours of playtime provided by a stakeholder from the video games industry, we found no credible evidence for overall reduction in the prevalence of heavy playtime following the implementation of regulations: individual accounts became 1.14 times more likely to play heavily in any given week (95% confidence interval 1.139–1.141). This falls below our preregistered smallest effect size of interest (2.0) and thus is not interpreted as a practically meaningful increase. Results remain robust across a variety of sensitivity analyses, including an analysis of more recent (2021) adjustments to playtime regulation. This casts doubt on the effectiveness of such state-controlled playtime mandates.

Suggested Citation

  • David Zendle & Catherine Flick & Elena Gordon-Petrovskaya & Nick Ballou & Leon Y. Xiao & Anders Drachen, 2023. "No evidence that Chinese playtime mandates reduced heavy gaming in one segment of the video games industry," Nature Human Behaviour, Nature, vol. 7(10), pages 1753-1766, October.
  • Handle: RePEc:nat:nathum:v:7:y:2023:i:10:d:10.1038_s41562-023-01669-8
    DOI: 10.1038/s41562-023-01669-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-023-01669-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-023-01669-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Sarah Miller & Norman Johnson & Laura R Wherry, 2021. "Medicaid and Mortality: New Evidence From Linked Survey and Administrative Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(3), pages 1783-1829.
    3. Suzanne Lischer & Emilien Jeannot & Lukas Brülisauer & Niels Weber & Yasser Khazaal & Samuel Bendahan & Olivier Simon, 2022. "Response to the Regulation of Video Games under the Youth Media Protection Act: A Public Health Perspective," IJERPH, MDPI, vol. 19(15), pages 1-11, July.
    4. Colder Carras, Michelle & Kalbarczyk, Anna & Wells, Kurrie & Banks, Jaime & Kowert, Rachel & Gillespie, Colleen & Latkin, Carl, 2018. "Connection, meaning, and distraction: A qualitative study of video game play and mental health recovery in veterans treated for mental and/or behavioral health problems," Social Science & Medicine, Elsevier, vol. 216(C), pages 124-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiroyuki Egami & Md. Shafiur Rahman & Tsuyoshi Yamamoto & Chihiro Egami & Takahisa Wakabayashi, 2024. "Causal effect of video gaming on mental well-being in Japan 2020–2022," Nature Human Behaviour, Nature, vol. 8(10), pages 1943-1956, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    2. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    3. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    4. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    5. Carlos Díaz & Sebastian Fossati & Nicolás Trajtenberg, 2022. "Stay at home if you can: COVID‐19 stay‐at‐home guidelines and local crime," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 19(4), pages 1067-1113, December.
    6. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    7. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    8. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    9. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    10. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    11. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    12. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    13. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    14. Thomas Horvath & Peter Huber & Ulrike Huemer & Helmut Mahringer & Philipp Piribauer & Mark Sommer & Stefan Weingärtner, 2022. "Mittelfristige Beschäftigungsprognose für Österreich und die Bundesländer. Berufliche und sektorale Veränderungen 2021 bis 2028," WIFO Studies, WIFO, number 70720.
    15. Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
    16. de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
    17. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    18. Pawlikowski, Maciej & Chorowska, Agata, 2020. "Weighted ensemble of statistical models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 93-97.
    19. Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa," Economies, MDPI, vol. 11(6), pages 1-17, May.
    20. Fijorek Kamil & Leśniewska Agnieszka, 2012. "Statistical Forecasting of the Indicators of Polish Airport’s Operations," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 7-7, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:7:y:2023:i:10:d:10.1038_s41562-023-01669-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.