IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00940089.html
   My bibliography  Save this paper

Estimation of multivariate critical layers: Applications to rainfall data

Author

Listed:
  • Elena Di Bernardino

    (CEDRIC - Centre d'études et de recherche en informatique et communications - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - CNAM - Conservatoire National des Arts et Métiers [CNAM])

  • Didier Rullière

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

Abstract

Calculating return periods and critical layers (i.e., multivariate quantile curves) in a multivariate environment is a di cult problem. A possible consistent theoretical framework for the calculation of the return period, in a multi-dimensional environment, is essentially based on the notion of copula and level sets of the multivariate probability distribution. In this paper we propose a fast and parametric methodology to estimate the multivariate critical layers of a distribution and its associated return periods. The model is based on transformations of the marginal distributions and transformations of the dependence structure within the class of Archimedean copulas. The model has a tunable number of parameters, and we show that it is possible to get a competitive estimation without any global optimum research. We also get parametric expressions for the critical layers and return periods. The methodology is illustrated on hydrological 5-dimensional real data. On this real data-set we obtain a good quality of estimation and we compare the obtained results with some classical parametric competitors

Suggested Citation

  • Elena Di Bernardino & Didier Rullière, 2015. "Estimation of multivariate critical layers: Applications to rainfall data," Post-Print hal-00940089, HAL.
  • Handle: RePEc:hal:journl:hal-00940089
    Note: View the original document on HAL open archive server: https://hal.science/hal-00940089v3
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00940089v3/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hofert, Marius & Pham, David, 2013. "Densities of nested Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 37-52.
    2. Marco Corazza & Florence Legros & Cira Perna & Marilena Sibillo, 2017. "Mathematical and Statistical Methods for Actuarial Sciences and Finance," Post-Print hal-01776135, HAL.
    3. Embrechts, Paul & Puccetti, Giovanni, 2006. "Bounds for functions of multivariate risks," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 526-547, February.
    4. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
    5. Nelsen, Roger B. & Quesada-Molina, José Juan & Rodri­guez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2008. "On the construction of copulas and quasi-copulas with given diagonal sections," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 473-483, April.
    6. Di Bernardino, Elena & Rullière, Didier, 2013. "Distortions of multivariate distribution functions and associated level curves: Applications in multivariate risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 190-205.
    7. Barbe, Philippe & Genest, Christian & Ghoudi, Kilani & Rémillard, Bruno, 1996. "On Kendall's Process," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 197-229, August.
    8. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    9. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Rejoinder on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 290-292, August.
    10. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    11. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 263-270, August.
    12. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    13. Robert Serfling, 2002. "Quantile functions for multivariate analysis: approaches and applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(2), pages 214-232, May.
    14. Kojadinovic, Ivan & Yan, Jun, 2010. "Modeling Multivariate Distributions with Continuous Margins Using the copula R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i09).
    15. repec:hal:wpaper:hal-00834000 is not listed on IDEAS
    16. Wysocki, Włodzimierz, 2012. "Constructing archimedean copulas from diagonal sections," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 818-826.
    17. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Penev, Spiridon I., 2008. "GeD spline estimation of multivariate Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3570-3582, March.
    18. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    19. Genest, Christian & Rivest, Louis-Paul, 2001. "On the multivariate probability integral transformation," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 391-399, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    2. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    2. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    3. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    4. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    5. Elena Di Bernardino & Clémentine Prieur, 2014. "Estimation of multivariate conditional-tail-expectation using Kendall's process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 241-267, June.
    6. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01467857, HAL.
    7. Quessy, Jean-François & Bahraoui, Tarik, 2014. "Weak convergence of empirical and bootstrapped C-power processes and application to copula goodness-of-fit," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 16-36.
    8. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Post-Print halshs-01467857, HAL.
    9. Areski Cousin & Elena Di Bernadino, 2011. "On Multivariate Extensions of Value-at-Risk," Papers 1111.1349, arXiv.org, revised Apr 2013.
    10. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2018.
    12. Segers, Johan & Uyttendaele, Nathan, 2013. "Nonparametric estimation of the tree structure of a nested Archimedean copula," LIDAM Discussion Papers ISBA 2013009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Cousin, Areski & Di Bernardino, Elena, 2013. "On multivariate extensions of Value-at-Risk," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 32-46.
    14. Areski Cousin & Elena Di Bernadino, 2013. "On Multivariate Extensions of Value-at-Risk," Working Papers hal-00638382, HAL.
    15. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    16. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    17. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    18. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00940089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.