Bayesian multiscale smoothing in supervised and semi-supervised kernel discriminant analysis
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nema Dean & Thomas Brendan Murphy & Gerard Downey, 2006. "Using unlabelled data to update classification rules with applications in food authenticity studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(1), pages 1-14, January.
- Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
- Same, Allou & Ambroise, Christophe & Govaert, Gerard, 2006. "A classification EM algorithm for binned data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 466-480, November.
- Celeux, Gilles & Govaert, Gerard, 1992. "A classification EM algorithm for clustering and two stochastic versions," Computational Statistics & Data Analysis, Elsevier, vol. 14(3), pages 315-332, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- B. Karmakar & K. Dhara & K. Dey & A. Basu & A. Ghosh, 2015. "Tests for statistical significance of a treatment effect in the presence of hidden sub-populations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 97-119, March.
- Subhajit Dutta & Anil K. Ghosh, 2017. "Discussion," International Statistical Review, International Statistical Institute, vol. 85(1), pages 40-43, April.
- William Cipolli & Timothy Hanson, 2019. "Supervised learning via smoothed Polya trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 877-904, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sharon M. McNicholas & Paul D. McNicholas & Daniel A. Ashlock, 2021. "An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 264-279, July.
- Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
- Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
- François Bavaud, 2009. "Aggregation invariance in general clustering approaches," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 205-225, December.
- Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012.
"Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
- Shuowen Hu & D.S. Poskitt & Xibin Zhang, 2010. "Bayesian Adaptive Bandwidth Kernel Density Estimation of Irregular Multivariate Distributions," Monash Econometrics and Business Statistics Working Papers 21/10, Monash University, Department of Econometrics and Business Statistics.
- Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
- Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015.
"Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval,"
Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2012. "Bayesian Approaches to Non-parametric Estimation of Densities on the Unit Interval," Monash Econometrics and Business Statistics Working Papers 3/12, Monash University, Department of Econometrics and Business Statistics.
- Hornik, Kurt & Grün, Bettina, 2014. "movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i10).
- Y. Ziane & S. Adjabi & N. Zougab, 2015. "Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1645-1658, August.
- Zhang, Xibin & King, Maxwell L., 2008.
"Box-Cox stochastic volatility models with heavy-tails and correlated errors,"
Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
- Xibin Zhang & Maxwell L. King, 2004. "Box-Cox Stochastic Volatility Models with Heavy-Tails and Correlated Errors," Monash Econometrics and Business Statistics Working Papers 26/04, Monash University, Department of Econometrics and Business Statistics.
- M. Vrac & L. Billard & E. Diday & A. Chédin, 2012. "Copula analysis of mixture models," Computational Statistics, Springer, vol. 27(3), pages 427-457, September.
- Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2021. "Bayesian estimation for a semiparametric nonlinear volatility model," Economic Modelling, Elsevier, vol. 98(C), pages 361-370.
- repec:jss:jstsof:28:i04 is not listed on IDEAS
- Chehade, Abdallah & Savargaonkar, Mayuresh & Krivtsov, Vasiliy, 2022. "Conditional Gaussian mixture model for warranty claims forecasting," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- David Pitt & Montserrat Guillen & Catalina Bolancé, 2011. "Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers XREAP2011-06, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.
- Yasmina Ziane & Nabil Zougab & Smail Adjabi, 2018. "Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data," Computational Statistics, Springer, vol. 33(1), pages 299-318, March.
- Langrené, Nicolas & Warin, Xavier, 2021. "Fast multivariate empirical cumulative distribution function with connection to kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
- García-Escudero, L.A. & Gordaliza, A. & Mayo-Iscar, A. & San Martín, R., 2010. "Robust clusterwise linear regression through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3057-3069, December.
- Yves Grandvalet & Yoshua Bengio, 2004. "Learning from Partial Labels with Minimum Entropy," CIRANO Working Papers 2004s-28, CIRANO.
- Tingting Cheng & Jiti Gao & Xibin Zhang, 2014. "Semiparametric Localized Bandwidth Selection for Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 27/14, Monash University, Department of Econometrics and Business Statistics.
More about this item
Keywords
Bayes risk Gibbs sampling Kernel density estimation Misclassification rate Markov chain Monte Carlo Non-informative prior Transductive learning;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:7:p:2344-2353. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.