IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i1p8-d1584099.html
   My bibliography  Save this article

White Noise and Its Misapplications: Impacts on Time Series Model Adequacy and Forecasting

Author

Listed:
  • Hossein Hassani

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Leila Marvian Mashhad

    (Big Data Lab, Imam Reza International University, Mashhad 178-436, Iran)

  • Manuela Royer-Carenzi

    (I2M, Aix-Marseille Univ, CNRS, UMR 7373, Centrale Marseille, 13007 Marseille, France)

  • Mohammad Reza Yeganegi

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Nadejda Komendantova

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

Abstract

This paper contributes significantly to time series analysis by discussing the empirical properties of white noise and their implications for model selection. This paper illustrates the ways in which the standard assumptions about white noise typically fail in practice, with a special emphasis on striking differences in sample ACF and PACF. Such findings prove particularly important when assessing model adequacy and discerning between residuals of different models, especially ARMA processes. This study addresses issues involving testing procedures, for instance, the Ljung–Box test, to select the correct time series model determined in the review. With the improvement in understanding the features of white noise, this work enhances the accuracy of modeling diagnostics toward real forecasting practice, which gives it applied value in time series analysis and signal processing.

Suggested Citation

  • Hossein Hassani & Leila Marvian Mashhad & Manuela Royer-Carenzi & Mohammad Reza Yeganegi & Nadejda Komendantova, 2025. "White Noise and Its Misapplications: Impacts on Time Series Model Adequacy and Forecasting," Forecasting, MDPI, vol. 7(1), pages 1-14, February.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:1:p:8-:d:1584099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hossein Hassani & Masoud Yarmohammadi & Leila Marvian Mashhad, 2023. "Uncovering Hidden Insights with Long-Memory Process Detection: An In-Depth Overview," Risks, MDPI, vol. 11(6), pages 1-15, June.
    2. Kirman Alan & Teyssière Gilles, 2002. "Microeconomic Models for Long Memory in the Volatility of Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(4), pages 1-23, January.
    3. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    4. M. Boutahar & M. Royer-Carenzi, 2024. "Identifying trend nature in time series using autocorrelation functions and stationarity tests," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 14(1), pages 1-22.
    5. Hossein Hassani & Emmanuel Sirimal Silva, 2015. "A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts," Econometrics, MDPI, vol. 3(3), pages 1-20, August.
    6. Hassani, Hossein & Yeganegi, Mohammad Reza, 2020. "Selecting optimal lag order in Ljung–Box test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuela Royer-Carenzi & Hossein Hassani, 2025. "Deviations from Normality in Autocorrelation Functions and Their Implications for MA(q) Modeling," Stats, MDPI, vol. 8(1), pages 1-37, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuela Royer-Carenzi & Hossein Hassani, 2025. "Deviations from Normality in Autocorrelation Functions and Their Implications for MA(q) Modeling," Stats, MDPI, vol. 8(1), pages 1-37, February.
    2. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    3. Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed & Huang, Xu, 2019. "Forecasting tourism demand with denoised neural networks," Annals of Tourism Research, Elsevier, vol. 74(C), pages 134-154.
    4. Hassani, Hossein & Silva, Emmanuel Sirimal, 2018. "Forecasting UK consumer price inflation using inflation forecasts," Research in Economics, Elsevier, vol. 72(3), pages 367-378.
    5. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    6. Cristiana Tudor, 2016. "Predicting the Evolution of CO 2 Emissions in Bahrain with Automated Forecasting Methods," Sustainability, MDPI, vol. 8(9), pages 1-10, September.
    7. Silva, Emmanuel Sirimal & Hassani, Hossein, 2022. "‘Modelling’ UK tourism demand using fashion retail sales," Annals of Tourism Research, Elsevier, vol. 95(C).
    8. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    9. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    10. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    11. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    12. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    13. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    14. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    15. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    16. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    17. Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa," Economies, MDPI, vol. 11(6), pages 1-17, May.
    18. Fijorek Kamil & Leśniewska Agnieszka, 2012. "Statistical Forecasting of the Indicators of Polish Airport’s Operations," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 7-7, January.
    19. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    20. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:1:p:8-:d:1584099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.