IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2015-62.html
   My bibliography  Save this paper

The Accuracy of Forecasts Prepared for the Federal Open Market Committee

Author

Listed:

Abstract

We analyze forecasts of consumption, nonresidential investment, residential investment, government spending, exports, imports, inventories, gross domestic product, inflation, and unemployment prepared by the staff of the Board of Governors of the Federal Reserve System for meetings of the Federal Open Market Committee from 1997 to 2008, called the Greenbooks. We compare the root mean squared error, mean absolute error, and the proportion of directional errors of Greenbook forecasts of these macroeconomic indicators to the errors from three forecasting benchmarks: a random walk, a first-order autoregressive model, and a Bayesian model averaged forecast from a suite of univariate time-series models commonly taught to first-year economics graduate students. We estimate our forecasting benchmarks both on end-of-sample vintage and real-time vintage data. We find find that Greenbook forecasts significantly outperform our benchmark forecasts for horizons less than one quarter ahead. However, by the one-year forecast horizon, typically at least one of our forecasting benchmarks performs as well as Greenbook forecasts. Greenbook forecasts of the personal consumption expenditures and unemployment tend to do relatively well, while Greenbook forecasts of inventory investment, government expenditures, and inflation tend to do poorly.

Suggested Citation

  • Andrew C. Chang & Tyler J. Hanson, 2015. "The Accuracy of Forecasts Prepared for the Federal Open Market Committee," Finance and Economics Discussion Series 2015-62, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2015-62
    DOI: 10.17016/FEDS.2015.062
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/econresdata/feds/2015/files/2015062pap.pdf
    File Function: Full text
    Download Restriction: no

    File URL: http://dx.doi.org/10.17016/FEDS.2015.062
    File Function: http://dx.doi.org/10.17016/FEDS.2015.062
    Download Restriction: no

    File URL: https://libkey.io/10.17016/FEDS.2015.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    2. Jonathan H. Wright, 2009. "Forecasting US inflation by Bayesian model averaging," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 131-144.
    3. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
    4. Michael P. Clements & Ana Beatriz Galvão, 2013. "Real‐Time Forecasting Of Inflation And Output Growth With Autoregressive Models In The Presence Of Data Revisions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 458-477, April.
    5. Baghestani, Hamid, 2011. "Federal Reserve and private forecasts of growth in investment," Journal of Economics and Business, Elsevier, vol. 63(4), pages 290-305, July.
    6. David L. Reifschneider & Peter Tulip, 2007. "Gauging the uncertainty of the economic outlook from historical forecasting errors," Finance and Economics Discussion Series 2007-60, Board of Governors of the Federal Reserve System (U.S.).
    7. Peter Tulip, 2009. "Has the Economy Become More Predictable? Changes in Greenbook Forecast Accuracy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1217-1231, September.
    8. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    9. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
    10. Arai, Natsuki, 2014. "Using forecast evaluation to improve the accuracy of the Greenbook forecast," International Journal of Forecasting, Elsevier, vol. 30(1), pages 12-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    2. David L. Reifschneider & Peter Tulip, 2017. "Gauging the Uncertainty of the Economic Outlook Using Historical Forecasting Errors : The Federal Reserve's Approach," Finance and Economics Discussion Series 2017-020, Board of Governors of the Federal Reserve System (U.S.).
    3. Berge, Travis J. & Chang, Andrew C. & Sinha, Nitish R., 2019. "Evaluating the conditionality of judgmental forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1627-1635.
    4. Arai, Natsuki, 2014. "Using forecast evaluation to improve the accuracy of the Greenbook forecast," International Journal of Forecasting, Elsevier, vol. 30(1), pages 12-19.
    5. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    6. Paul Hubert, 2015. "Revisiting the Greenbook’s relative forecasting performance," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(1), pages 151-179.
    7. Rochelle M. Edge & Refet S. Gürkaynak, 2011. "How useful are estimated DSGE model forecasts?," Finance and Economics Discussion Series 2011-11, Board of Governors of the Federal Reserve System (U.S.).
    8. Rochelle M. Edge & Refet S. Gurkaynak, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
    9. repec:hal:spmain:info:hdl:2441/35kgubh40v9gfpnuruelqjnptb is not listed on IDEAS
    10. repec:spo:wpmain:info:hdl:2441/35kgubh40v9gfpnuruelqjnptb is not listed on IDEAS
    11. Peter Tulip & Stephanie Wallace, 2012. "Estimates of Uncertainty around the RBA's Forecasts," RBA Research Discussion Papers rdp2012-07, Reserve Bank of Australia.
    12. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
    13. Gamber, Edward N. & Smith, Julie K., 2009. "Are the Fed's inflation forecasts still superior to the private sector's?," Journal of Macroeconomics, Elsevier, vol. 31(2), pages 240-251, June.
    14. Jung, Alexander & El-Shagi, Makram & Giesen, Sebastian, 2014. "Does the federal reserve staff still beat private forecasters?," Working Paper Series 1635, European Central Bank.
    15. Rochelle M. Edge & Michael T. Kiley & Jean-Philippe Laforte, 2010. "A comparison of forecast performance between Federal Reserve staff forecasts, simple reduced-form models, and a DSGE model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 720-754.
    16. Arai, Natsuki, 2020. "Investigating the inefficiency of the CBO’s budgetary projections," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1290-1300.
    17. Wright, Jonathan H., 2019. "Some observations on forecasting and policy," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1186-1192.
    18. Nikolsko-Rzhevskyy, Alex, 2008. "Monetary Policy Evaluation in Real Time: Forward-Looking Taylor Rules Without Forward-Looking Data," MPRA Paper 11352, University Library of Munich, Germany.
    19. Edward S. Knotek & Saeed Zaman, 2017. "Nowcasting U.S. Headline and Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 931-968, August.
    20. Lillian R. Gaeto & Sandeep Mazumder, 2019. "Measuring the Accuracy of Federal Reserve Forecasts," Southern Economic Journal, John Wiley & Sons, vol. 85(3), pages 960-984, January.
    21. repec:spo:wpmain:info:hdl:2441/3pot7260lh88lrfhrhvs85lh2f is not listed on IDEAS
    22. Natsuki Arai, 2016. "Evaluating the Efficiency of the FOMC's New Economic Projections," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(5), pages 1019-1049, August.
    23. Gamber, Edward N. & Smith, Julie K. & McNamara, Dylan C., 2014. "Where is the Fed in the distribution of forecasters?," Journal of Policy Modeling, Elsevier, vol. 36(2), pages 296-312.

    More about this item

    Keywords

    Bayesian model averaging; Federal Open Market Committee; forecast accuracy; Greenbook; NIPA; national income and product accounts; real-time data;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • F17 - International Economics - - Trade - - - Trade Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2015-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.