IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v54y2020ics1062940818301153.html
   My bibliography  Save this article

Forecasting oil futures market volatility in a financialized world: Why speculative activities matter

Author

Listed:
  • Chan, Kam C.
  • Chan, Leo H.
  • Nguyen, Chi M.

Abstract

We analyze the relation between volatility and speculative activities in the crude oil futures market and provide short-term forecasts accordingly. By incorporating trading volume and opening interest (speculative ratio) into the volatility dynamics, we document the subtle interaction between the two measures of which the volatility-averse behavior of speculative activities plays a considerable role in the market. Moreover, by accounting for structural changes, we find significant evidence that this behavior currently becomes weaker than in the past, which implies the oil futures market is less informative and/or less risk-averse in recent time period. Our forecasts based on these features perform very well under the predictive preferences that are consistent with the volatility-averse behavior in the oil futures market. We provide discussions and policy inferences.

Suggested Citation

  • Chan, Kam C. & Chan, Leo H. & Nguyen, Chi M., 2020. "Forecasting oil futures market volatility in a financialized world: Why speculative activities matter," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
  • Handle: RePEc:eee:ecofin:v:54:y:2020:i:c:s1062940818301153
    DOI: 10.1016/j.najef.2018.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940818301153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2018.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omokolade Akinsomi & Mehmet Balcilar & Rıza Demirer & Rangan Gupta, 2017. "The effect of gold market speculation on REIT returns in South Africa: a behavioral perspective," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 774-793, October.
    2. Bessembinder, Hendrik & Seguin, Paul J., 1993. "Price Volatility, Trading Volume, and Market Depth: Evidence from Futures Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 21-39, March.
    3. Jushan Bai, 1994. "Least Squares Estimation Of A Shift In Linear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 453-472, September.
    4. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    5. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
    6. Yu, Honghai & Du, Donglei & Fang, Libing & Yan, Panpan, 2018. "Risk contribution of crude oil to industry stock returns," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 179-199.
    7. Roll, Richard, 1984. "Orange Juice and Weather," American Economic Review, American Economic Association, vol. 74(5), pages 861-880, December.
    8. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    9. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-1189, December.
    10. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    11. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    12. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    13. Christoffersen, Peter F & Diebold, Francis X, 1996. "Further Results on Forecasting and Model Selection under Asymmetric Loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 561-571, Sept.-Oct.
    14. Jushan Bai, 2000. "Vector Autoregressive Models with Structural Changes in Regression Coefficients and in Variance-Covariance Matrices," Annals of Economics and Finance, Society for AEF, vol. 1(2), pages 303-339, November.
    15. Areli Bermudez Delgado, Nancy & Bermudez Delgado, Estefanía & Saucedo, Eduardo, 2018. "The relationship between oil prices, the stock market and the exchange rate: Evidence from Mexico," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 266-275.
    16. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    17. Marc Lavielle & Eric Moulines, 2000. "Least‐squares Estimation of an Unknown Number of Shifts in a Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 33-59, January.
    18. Tokic, Damir, 2011. "Rational destabilizing speculation, positive feedback trading, and the oil bubble of 2008," Energy Policy, Elsevier, vol. 39(4), pages 2051-2061, April.
    19. Balcılar, Mehmet & Demirer, Rıza & Ulussever, Talat, 2017. "Does speculation in the oil market drive investor herding in emerging stock markets?," Energy Economics, Elsevier, vol. 65(C), pages 50-63.
    20. BenMabrouk, Houda & Litimi, Houda, 2018. "Cross herding between American industries and the oil market," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 196-205.
    21. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    22. Filippo Lechthaler & Lisa Leinert, 2012. "Moody Oil - What is Driving the Crude Oil Price?," CER-ETH Economics working paper series 12/168, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    23. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    24. Bessembinder, Hendrik & Seguin, Paul J, 1992. "Futures-Trading Activity and Stock Price Volatility," Journal of Finance, American Finance Association, vol. 47(5), pages 2015-2034, December.
    25. Hung‐Gay Fung & Gary A. Patterson, 2001. "Volatility, global information, and market conditions: a study in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(2), pages 173-196, February.
    26. repec:bla:opecrv:v:34:y:2010:i:1:p:25-41 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Chiu-Lan, 2024. "Extreme events, economic uncertainty and speculation on occurrences of price bubbles in crude oil futures," Energy Economics, Elsevier, vol. 130(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Leo H. & Nguyen, Chi M. & Chan, Kam C., 2015. "A new approach to measure speculation in the oil futures market and some policy implications," Energy Policy, Elsevier, vol. 86(C), pages 133-141.
    2. Karanasos, M. & Kartsaklas, A., 2009. "Dual long-memory, structural breaks and the link between turnover and the range-based volatility," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 838-851, December.
    3. repec:ipg:wpaper:19 is not listed on IDEAS
    4. Yannick Le Pen & Benoît Sévi, 2013. "Futures Trading and the Excess Comovement of Commodity Prices," Working Papers halshs-00793724, HAL.
    5. repec:ipg:wpaper:2013-019 is not listed on IDEAS
    6. Diaz-Rainey, Ivan & Roberts, Helen & Lont, David H., 2017. "Crude inventory accounting and speculation in the physical oil market," Energy Economics, Elsevier, vol. 66(C), pages 508-522.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Alp, Tansel & Demetrescu, Matei, 2010. "Joint forecasts of Dow Jones stocks under general multivariate loss function," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2360-2371, November.
    9. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    10. Marcella Niglio, 2007. "Multi-step forecasts from threshold ARMA models using asymmetric loss functions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(3), pages 395-410, November.
    11. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    12. Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.
    13. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    14. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    15. Shi, Yujie & Wang, Liming & Ke, Jian, 2021. "Does the US-China trade war affect co-movements between US and Chinese stock markets?," Research in International Business and Finance, Elsevier, vol. 58(C).
    16. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    17. Wu, Nan & Wen, Fenghua & Gong, Xu, 2022. "Marionettes behind co-movement of commodity prices: Roles of speculative and hedging activities," Energy Economics, Elsevier, vol. 115(C).
    18. Eiji Kurozumi & Yohei Yamamoto, 2015. "Confidence sets for the break date based on optimal tests," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 412-435, October.
    19. Claudio Dicembrino & Pasquale Lucio Scandizzo, 2012. "The Fundamental and Speculative Components of the Oil Spot Price: A Real Option Value Approach," CEIS Research Paper 229, Tor Vergata University, CEIS, revised 18 Apr 2012.
    20. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    21. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    22. Menelaos Karanasos & Alexandros Paraskevopoulos & Faek Menla Ali & Michail Karoglou & Stavroula Yfanti, 2014. "Modelling Returns and Volatilities During Financial Crises: a Time Varying Coefficient Approach," Papers 1403.7179, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:54:y:2020:i:c:s1062940818301153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.