An Overview of Short-Term Load Forecasting for Electricity Systems Operational Planning: Machine Learning Methods and the Brazilian Experience
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Yi & Gan, Dahua & Sun, Mingyang & Zhang, Ning & Lu, Zongxiang & Kang, Chongqing, 2019. "Probabilistic individual load forecasting using pinball loss guided LSTM," Applied Energy, Elsevier, vol. 235(C), pages 10-20.
- Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Rafael B. S. Veras & Clóvis B. M. Oliveira & Shigeaki L. de Lima & Osvaldo R. Saavedra & Denisson Q. Oliveira & Felipe M. Pimenta & Denivaldo C. P. Lopes & Audálio R. Torres Junior & Francisco L. A. N, 2023. "Assessing Economic Complementarity in Wind–Solar Hybrid Power Plants Connected to the Brazilian Grid," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
- Wang Q. & Linton O. & Hardle W., 2004.
"Semiparametric Regression Analysis With Missing Response at Random,"
Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
- Wolfgang Härdle & Oliver Linton & Wang, Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers CWP11/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Xie, Jingrui & Hong, Tao, 2016. "GEFCom2014 probabilistic electric load forecasting: An integrated solution with forecast combination and residual simulation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1012-1016.
- Tao Hong, 2014.
"Energy Forecasting: Past, Present, and Future,"
Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 32, pages 43-48, Winter.
- Tao Hong, 2013. "Energy forecasting: Past, present and future," HSC Research Reports HSC/13/15, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, November.
- Hong, Tao & Wang, Pu & White, Laura, 2015. "Weather station selection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 31(2), pages 286-295.
- Lindberg, K.B. & Seljom, P. & Madsen, H. & Fischer, D. & Korpås, M., 2019. "Long-term electricity load forecasting: Current and future trends," Utilities Policy, Elsevier, vol. 58(C), pages 102-119.
- Wu, Zhuochun & Zhao, Xiaochen & Ma, Yuqing & Zhao, Xinyan, 2019. "A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting," Applied Energy, Elsevier, vol. 237(C), pages 896-909.
- Wang Q. & Linton O. & Hardle W., 2004.
"Semiparametric Regression Analysis With Missing Response at Random,"
Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
- Wolfgang Härdle & Oliver Linton & Wang, Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers CWP11/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wolfgang Härdle & Oliver Linton & Wang & Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers 11/03, Institute for Fiscal Studies.
- Jeong, Dongyeon & Park, Chiwoo & Ko, Young Myoung, 2021. "Short-term electric load forecasting for buildings using logistic mixture vector autoregressive model with curve registration," Applied Energy, Elsevier, vol. 282(PB).
- He, Yaoyao & Cao, Chaojin & Wang, Shuo & Fu, Hong, 2022. "Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems," Applied Energy, Elsevier, vol. 322(C).
- Gaillard, Pierre & Goude, Yannig & Nedellec, Raphaël, 2016. "Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1038-1050.
- Bassamzadeh, Nastaran & Ghanem, Roger, 2017. "Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks," Applied Energy, Elsevier, vol. 193(C), pages 369-380.
- Puwasala Gamakumara & Anastasios Panagiotelis & George Athanasopoulos & Rob J Hyndman, 2018. "Probabilisitic forecasts in hierarchical time series," Monash Econometrics and Business Statistics Working Papers 11/18, Monash University, Department of Econometrics and Business Statistics.
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, November.
- Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
- J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
- Zhang, Dongxue & Wang, Shuai & Liang, Yuqiu & Du, Zhiyuan, 2023. "A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer," Energy, Elsevier, vol. 264(C).
- Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017.
"Generalized partially linear regression with misclassified data and an application to labour market transitions,"
Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
- Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2015. "Generalised partially linear regression with misclassied data and an application to labour market transitions," FDZ-Methodenreport 201510 (en), Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2015. "Generalised partially linear regression with misclassified data and an application to labour market transitions," ZEW Discussion Papers 15-043, ZEW - Leibniz Centre for European Economic Research.
- Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012.
"Difference based ridge and Liu type estimators in semiparametric regression models,"
Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
- Duran, Esra Akdeniz & Härdle, Wolfgang Karl & Osipenko, Maria, 2011. "Difference based ridge and Liu type estimators in semiparametric regression models," SFB 649 Discussion Papers 2011-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
- Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
- Zanin, Luca, 2023. "A flexible estimation of sectoral portfolio exposure to climate transition risks in the European stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
- Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
- Qi Qian & Danh V. Nguyen & Esra Kürüm & Connie M. Rhee & Sudipto Banerjee & Yihao Li & Damla Şentürk, 2024. "Multivariate Varying Coefficient Spatiotemporal Model," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 761-786, December.
- Yu Liu & Chin-Shang Li, 2023. "A linear spline Cox cure model with its applications," Computational Statistics, Springer, vol. 38(2), pages 935-954, June.
- Elizabeth Goult & Laura Andrea Barrero Guevara & Michael Briga & Matthieu Domenech de Cellès, 2024. "Estimating the optimal age for infant measles vaccination," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
- Benjamin Owusu & Bettina Bökemeier & Alfred Greiner, 2023. "Assessing nonlinearities and heterogeneity in debt sustainability analysis: a panel spline approach," Empirical Economics, Springer, vol. 64(3), pages 1315-1346, March.
- Maximilian Osterhaus, 2024. "A Sparse Grid Approach for the Nonparametric Estimation of High-Dimensional Random Coefficient Models," Papers 2408.07185, arXiv.org.
- Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
- Mark J. Meyer & Haobo Cheng & Katherine Hobbs Knutson, 2023. "Bayesian Analysis of Multivariate Matched Proportions with Sparse Response," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 490-509, July.
- Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
- Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.
- Zhongqi Liang & Qihua Wang, 2023. "A robust model averaging approach for partially linear models with responses missing at random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(4), pages 1933-1952, December.
- Sun, Shilin & Li, Qi & Hu, Wenyang & Liang, Zhongchao & Wang, Tianyang & Chu, Fulei, 2023. "Wind turbine blade breakage detection based on environment-adapted contrastive learning," Renewable Energy, Elsevier, vol. 219(P2).
- Waleed B. Altukhaes & Mahdi Roozbeh & Nur A. Mohamed, 2024. "Robust Liu Estimator Used to Combat Some Challenges in Partially Linear Regression Model by Improving LTS Algorithm Using Semidefinite Programming," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
- Lu, Steven Qiang & Singh, Sonika & de Roos, Nicolas, 2023. "Effects of online and offline advertising and their synergy on direct telephone sales," Journal of Retailing, Elsevier, vol. 99(3), pages 337-352.
More about this item
Keywords
short-term load forecasting; day-ahead operational planning; time series forecasting; machine learning methods; electricity power systems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7444-:d:1274146. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.