Probabilistic Intraday PV Power Forecast Using Ensembles of Deep Gaussian Mixture Density Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- David, Mathieu & Luis, Mazorra Aguiar & Lauret, Philippe, 2018. "Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data," International Journal of Forecasting, Elsevier, vol. 34(3), pages 529-547.
- Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002.
"A state space framework for automatic forecasting using exponential smoothing methods,"
International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
- Hyndman, R.J. & Koehler, A.B. & Snyder, R.D. & Grose, S., 2000. "A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods," Monash Econometrics and Business Statistics Working Papers 9/00, Monash University, Department of Econometrics and Business Statistics.
- Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
- Brusaferri, Alessandro & Matteucci, Matteo & Spinelli, Stefano & Vitali, Andrea, 2022. "Probabilistic electric load forecasting through Bayesian Mixture Density Networks," Applied Energy, Elsevier, vol. 309(C).
- van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
- Philippe Lauret & Mathieu David & Hugo T. C. Pedro, 2017. "Probabilistic Solar Forecasting Using Quantile Regression Models," Energies, MDPI, vol. 10(10), pages 1-17, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Adela Bâra & Simona‐Vasilica Oprea, 2024. "Embedding the weather prediction errors (WPE) into the photovoltaic (PV) forecasting method using deep learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1173-1198, August.
- Sánchez-Balseca, Joseph & Pineiros, José Luis & Pérez-Foguet, Agustí, 2023. "Influence of environmental factors on the power produced by photovoltaic panels artificially weathered," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lauret, Philippe & Alonso-Suárez, Rodrigo & Amaro e Silva, Rodrigo & Boland, John & David, Mathieu & Herzberg, Wiebke & Le Gall La Salle, Josselin & Lorenz, Elke & Visser, Lennard & van Sark, Wilfried, 2024. "The added value of combining solar irradiance data and forecasts: A probabilistic benchmarking exercise," Renewable Energy, Elsevier, vol. 237(PB).
- Le Gal La Salle, Josselin & Badosa, Jordi & David, Mathieu & Pinson, Pierre & Lauret, Philippe, 2020. "Added-value of ensemble prediction system on the quality of solar irradiance probabilistic forecasts," Renewable Energy, Elsevier, vol. 162(C), pages 1321-1339.
- Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Probabilistic solar power forecasting based on weather scenario generation," Applied Energy, Elsevier, vol. 266(C).
- Luis Mazorra-Aguiar & Philippe Lauret & Mathieu David & Albert Oliver & Gustavo Montero, 2021. "Comparison of Two Solar Probabilistic Forecasting Methodologies for Microgrids Energy Efficiency," Energies, MDPI, vol. 14(6), pages 1-26, March.
- Elena Collino & Dario Ronzio, 2021. "Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System," Energies, MDPI, vol. 14(3), pages 1-30, February.
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
- Mitrentsis, Georgios & Lens, Hendrik, 2022. "An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting," Applied Energy, Elsevier, vol. 309(C).
- Gu, Bo & Shen, Huiqiang & Lei, Xiaohui & Hu, Hao & Liu, Xinyu, 2021. "Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method," Applied Energy, Elsevier, vol. 299(C).
- John Boland & Sleiman Farah, 2021. "Probabilistic Forecasting of Wind and Solar Farm Output," Energies, MDPI, vol. 14(16), pages 1-15, August.
- Munkhammar, Joakim & van der Meer, Dennis & Widén, Joakim, 2021. "Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model," Applied Energy, Elsevier, vol. 282(PA).
- Ricardo Aler & Javier Huertas-Tato & José M. Valls & Inés M. Galván, 2019. "Improving Prediction Intervals Using Measured Solar Power with a Multi-Objective Approach," Energies, MDPI, vol. 12(24), pages 1-19, December.
- Thomas Carrière & Rodrigo Amaro e Silva & Fuqiang Zhuang & Yves-Marie Saint-Drenan & Philippe Blanc, 2021. "A New Approach for Satellite-Based Probabilistic Solar Forecasting with Cloud Motion Vectors," Energies, MDPI, vol. 14(16), pages 1-19, August.
- Carpentieri, A. & Folini, D. & Nerini, D. & Pulkkinen, S. & Wild, M. & Meyer, A., 2023. "Intraday probabilistic forecasts of surface solar radiation with cloud scale-dependent autoregressive advection," Applied Energy, Elsevier, vol. 351(C).
- Pierro, Marco & De Felice, Matteo & Maggioni, Enrico & Moser, David & Perotto, Alessandro & Spada, Francesco & Cornaro, Cristina, 2020. "Residual load probabilistic forecast for reserve assessment: A real case study," Renewable Energy, Elsevier, vol. 149(C), pages 508-522.
- Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
- Yuan, Feng & Chen, Zhongsheng & Liang, Yujia, 2024. "Precise solar radiation forecasting for sustainable energy integration: A hybrid CEEMD-SCM-GA-LGBM model for day-ahead power and hydrogen production," Renewable Energy, Elsevier, vol. 237(PC).
- Yang, Dazhi & Wu, Elynn & Kleissl, Jan, 2019. "Operational solar forecasting for the real-time market," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1499-1519.
- Takahiro Takamatsu & Hideaki Ohtake & Takashi Oozeki & Tosiyuki Nakaegawa & Yuki Honda & Masahiro Kazumori, 2021. "Regional Solar Irradiance Forecast for Kanto Region by Support Vector Regression Using Forecast of Meso-Ensemble Prediction System," Energies, MDPI, vol. 14(11), pages 1-18, June.
- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011.
"Optimal combination forecasts for hierarchical time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007. "Optimal combination forecasts for hierarchical time series," Monash Econometrics and Business Statistics Working Papers 9/07, Monash University, Department of Econometrics and Business Statistics.
More about this item
Keywords
PV power; probabilistic forecast; MDN; Monte Carlo dropout; deep ensemble;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:646-:d:1025957. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.