IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922011862.html
   My bibliography  Save this article

Optimization-driven uncertainty forecasting: Application to day-ahead commitment with renewable energy resources

Author

Listed:
  • Karimi, Sajad
  • Kwon, Soongeol

Abstract

The participation of power producers who generate electricity from renewable energy resources, e.g., wind and solar, in the electricity market has been significantly promoted by the high penetration of renewable electricity generation. In this case, the unit commitment is required to be formulated and solved to determine the optimal commitment in response to uncertainty existing in renewable electricity generation. To address this problem, a forecasting-first optimization-second approach has been practically applied in that the next-day renewable electricity generation is forecasted first using historical data, and then the unit commitment problem is solved using the forecasted renewable energy generation. However, the forecasting-first optimization-second approach has limitation that forecasting and optimization are decoupled, and thus, forecasting cannot be tuned by reflecting the effect of forecasted renewable energy generation on optimizing unit commitment. Given this context, this study proposes an optimization-driven renewable energy generation forecasting that is designed to integrate the unit commitment problem with the course of regression so that the regression can be done to minimize forecasting error while maximizing profit. Numerical experiments are conducted based on general regression models, e.g., auto-regressive and multiple linear regression models, with various parameter settings, and the results demonstrate that the proposed approach provides better renewable energy forecasting in terms of resulting unit commitment, i.e., greater profit and less penalty, without degrading forecasting accuracy significantly.

Suggested Citation

  • Karimi, Sajad & Kwon, Soongeol, 2022. "Optimization-driven uncertainty forecasting: Application to day-ahead commitment with renewable energy resources," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011862
    DOI: 10.1016/j.apenergy.2022.119929
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922011862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leva, S. & Dolara, A. & Grimaccia, F. & Mussetta, M. & Ogliari, E., 2017. "Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 88-100.
    2. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    3. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    4. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    5. Nur Sunar & John R. Birge, 2019. "Strategic Commitment to a Production Schedule with Uncertain Supply and Demand: Renewable Energy in Day-Ahead Electricity Markets," Management Science, INFORMS, vol. 65(2), pages 714-734, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhixing Li & Mimi Tian & Xiaoqing Zhu & Shujing Xie & Xin He, 2022. "A Review of Integrated Design Process for Building Climate Responsiveness," Energies, MDPI, vol. 15(19), pages 1-35, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Nakıp, Mert & Çopur, Onur & Biyik, Emrah & Güzeliş, Cüneyt, 2023. "Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network," Applied Energy, Elsevier, vol. 340(C).
    3. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
    5. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    6. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
    7. Geovanny Marulanda & Antonio Bello & Jenny Cifuentes & Javier Reneses, 2020. "Wind Power Long-Term Scenario Generation Considering Spatial-Temporal Dependencies in Coupled Electricity Markets," Energies, MDPI, vol. 13(13), pages 1-19, July.
    8. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    9. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    10. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    11. Javier López Gómez & Ana Ogando Martínez & Francisco Troncoso Pastoriza & Lara Febrero Garrido & Enrique Granada Álvarez & José Antonio Orosa García, 2020. "Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    12. Romain Dupin & Laura Cavalcante & Ricardo J. Bessa & Georges Kariniotakis & Andrea Michiorri, 2020. "Extreme Quantiles Dynamic Line Rating Forecasts and Application on Network Operation," Energies, MDPI, vol. 13(12), pages 1-21, June.
    13. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    14. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    15. Juraj Čurpek, 2019. "Time Evolution of Hurst Exponent: Czech Wholesale Electricity Market Study," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2019(3), pages 25-44.
    16. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    17. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    18. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    19. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    20. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2018. "A Novel and Alternative Approach for Direct and Indirect Wind-Power Prediction Methods," Energies, MDPI, vol. 11(11), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.