IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/78774.html
   My bibliography  Save this paper

Consensus forecasters: How good are they individually and why?

Author

Listed:
  • Franses, Ph.H.B.F.
  • Maassen, N.R.

Abstract

We analyze the monthly forecasts for annual US GDP growth, CPI inflation rate and the unemployment rate delivered by forty professional forecasters collected in the Consensus database for 2000M01-2014M12. To understand why some forecasters are better than others, we create simple benchmark model-based forecasts. Evaluating the individual forecasts against the model forecasts is informative for how the professional forecasters behave. Next, we link this behavior to forecast performance. We find that forecasters who impose proper judgment to model-based forecasts also have highest forecast accuracy, and hence, they do not perform best just by luck.

Suggested Citation

  • Franses, Ph.H.B.F. & Maassen, N.R., 2015. "Consensus forecasters: How good are they individually and why?," Econometric Institute Research Papers EI2015-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:78774
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/78774/EI2015-21..pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Batchelor, Roy, 2007. "Bias in macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(2), pages 189-203.
    2. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    3. Isiklar, Gultekin & Lahiri, Kajal, 2007. "How far ahead can we forecast? Evidence from cross-country surveys," International Journal of Forecasting, Elsevier, vol. 23(2), pages 167-187.
    4. Loungani, Prakash, 2001. "How accurate are private sector forecasts? Cross-country evidence from consensus forecasts of output growth," International Journal of Forecasting, Elsevier, vol. 17(3), pages 419-432.
    5. Kajal Lahiri & Xuguang Sheng, 2010. "Measuring forecast uncertainty by disagreement: The missing link," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 514-538.
    6. Franses, Philip Hans, 2016. "A note on the Mean Absolute Scaled Error," International Journal of Forecasting, Elsevier, vol. 32(1), pages 20-22.
    7. Kajal Lahiri & Gultekin Isiklar & Prakash Loungani, 2006. "How quickly do forecasters incorporate news? Evidence from cross-country surveys," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 703-725.
    8. Zarnowitz, Victor & Lambros, Louis A, 1987. "Consensus and Uncertainty in Economic Prediction," Journal of Political Economy, University of Chicago Press, vol. 95(3), pages 591-621, June.
    9. Dovern, Jonas & Weisser, Johannes, 2011. "Accuracy, unbiasedness and efficiency of professional macroeconomic forecasts: An empirical comparison for the G7," International Journal of Forecasting, Elsevier, vol. 27(2), pages 452-465.
    10. Roy Batchelor, 2007. "Forecaster Behaviour and Bias in Macroeconomic Forecasts," ifo Working Paper Series 39, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    11. Roy Batchelor, 2001. "How useful are the forecasts of intergovernmental agencies? The IMF and OECD versus the consensus," Applied Economics, Taylor & Francis Journals, vol. 33(2), pages 225-235.
    12. Rianne Legerstee & Philip Hans Franses, 2015. "Does Disagreement Amongst Forecasters Have Predictive Value?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(4), pages 290-302, July.
    13. Franses,Philip Hans, 2014. "Expert Adjustments of Model Forecasts," Cambridge Books, Cambridge University Press, number 9781107081598, January.
    14. Frenkel, Michael & Rülke, Jan-Christoph & Zimmermann, Lilli, 2013. "Do private sector forecasters chase after IMF or OECD forecasts?," Journal of Macroeconomics, Elsevier, vol. 37(C), pages 217-229.
    15. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philip Hans Franses & Bert Bruijn, 2017. "Benchmarking Judgmentally Adjusted Forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 22(1), pages 3-11, January.
    2. Meyler, Aidan, 2020. "Forecast performance in the ECB SPF: ability or chance?," Working Paper Series 2371, European Central Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Hans Franses & Max Welz, 2020. "Does More Expert Adjustment Associate with Less Accurate Professional Forecasts?," JRFM, MDPI, vol. 13(3), pages 1-8, March.
    2. Frenkel, Michael & Rülke, Jan-Christoph & Zimmermann, Lilli, 2013. "Do private sector forecasters chase after IMF or OECD forecasts?," Journal of Macroeconomics, Elsevier, vol. 37(C), pages 217-229.
    3. Dovern, Jonas & Fritsche, Ulrich & Loungani, Prakash & Tamirisa, Natalia, 2015. "Information rigidities: Comparing average and individual forecasts for a large international panel," International Journal of Forecasting, Elsevier, vol. 31(1), pages 144-154.
    4. Ager, P. & Kappler, M. & Osterloh, S., 2009. "The accuracy and efficiency of the Consensus Forecasts: A further application and extension of the pooled approach," International Journal of Forecasting, Elsevier, vol. 25(1), pages 167-181.
    5. Dovern, Jonas & Weisser, Johannes, 2011. "Accuracy, unbiasedness and efficiency of professional macroeconomic forecasts: An empirical comparison for the G7," International Journal of Forecasting, Elsevier, vol. 27(2), pages 452-465, April.
    6. Dimitrios Papastamos & Fotis Mouzakis & Simon Stevenson, 2014. "Rationality and Momentum in Real Estate Investment Forecasts," Real Estate & Planning Working Papers rep-wp2014-07, Henley Business School, University of Reading.
    7. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
    8. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    9. Bruno Deschamps & Christos Ioannidis, 2014. "The Efficiency of Multivariate Macroeconomic Forecasts," Manchester School, University of Manchester, vol. 82(5), pages 509-523, September.
    10. Dovern, Jonas & Fritsche, Ulrich & Loungani, Prakash & Tamirisa, Natalia, 2013. "Information Rigidities in Economic Growth Forecasts: Evidence from a Large International Panel," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79936, Verein für Socialpolitik / German Economic Association.
    11. Lahiri, Kajal & Sheng, Xuguang, 2010. "Learning and heterogeneity in GDP and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 26(2), pages 265-292, April.
    12. Conrad, Christian & Lahiri, Kajal, 2023. "Heterogeneous expectations among professional forecasters," ZEW Discussion Papers 23-062, ZEW - Leibniz Centre for European Economic Research.
    13. Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
    14. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.
    15. Papastamos, Dimitrios & Matysiak, George & Stevenson, Simon, 2015. "Assessing the accuracy and dispersion of real estate investment forecasts," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 141-152.
    16. Philip Hans Franses, 2020. "Correcting the January optimism effect," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 927-933, September.
    17. Clements, Michael P., 2021. "Do survey joiners and leavers differ from regular participants? The US SPF GDP growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 634-646.
    18. Stekler, H.O., 2007. "The future of macroeconomic forecasting: Understanding the forecasting process," International Journal of Forecasting, Elsevier, vol. 23(2), pages 237-248.
    19. Sergey V. Smirnov & Daria A. Avdeeva, 2016. "Wishful Bias in Predicting Us Recessions: Indirect Evidence," HSE Working papers WP BRP 135/EC/2016, National Research University Higher School of Economics.
    20. Sergey V. Smirnov, 2014. "Predicting US Recessions: Does a Wishful Bias Exist?," HSE Working papers WP BRP 77/EC/2014, National Research University Higher School of Economics.

    More about this item

    Keywords

    macroeconomic forecasts; expert adjustment;

    JEL classification:

    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:78774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub The email address of this maintainer does not seem to be valid anymore. Please ask RePub to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.