IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v248y2016i3p1021-1030.html
   My bibliography  Save this article

Probabilistic forecasting with discrete choice models: Evaluating predictions with pseudo-coefficients of determination

Author

Listed:
  • Sung, Ming-Chien
  • McDonald, David C.J.
  • Johnson, Johnnie E.V.

Abstract

Probabilistic forecasts from discrete choice models, which are widely used in marketing science and competitive event forecasting, are often best evaluated out-of-sample using pseudo-coefficients of determination, or pseudo-R2s. However, there is a danger of misjudging the accuracy of forecast probabilities of event outcomes, based on observed frequencies, because of issues related to pseudo-R2s. First, we show that McFadden’s pseudo-R2 varies predictably with the number of alternatives in the choice set. Then we evaluate the relative merits of two methods (bootstrap and asymptotic) for estimating the variance of pseudo-R2s so that their values can be appropriately compared across non-nested models. Finally, in the context of competitive event forecasting, where the accuracy of forecasts has direct economic consequence, we derive new R2 measures that can be used to assess the economic value of forecasts. Throughout, we illustrate using data drawn from UK and Ireland horse race betting markets.

Suggested Citation

  • Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V., 2016. "Probabilistic forecasting with discrete choice models: Evaluating predictions with pseudo-coefficients of determination," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1021-1030.
  • Handle: RePEc:eee:ejores:v:248:y:2016:i:3:p:1021-1030
    DOI: 10.1016/j.ejor.2015.08.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715008280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.08.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolfers, Justin & Zitzewitz, Eric, 2006. "Five Open Questions About Prediction Markets," CEPR Discussion Papers 5562, C.E.P.R. Discussion Papers.
    2. D. J. Johnstone, 2011. "Economic Interpretation of Probabilities Estimated by Maximum Likelihood or Score," Management Science, INFORMS, vol. 57(2), pages 308-314, February.
    3. Abe, Makoto, 1999. "A Generalized Additive Model for Discrete-Choice Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 271-284, July.
    4. Ming-Chien Sung & Johnnie E. V. Johnson & John Peirson, 2012. "Discovering a Profitable Trading Strategy in an Apparently Efficient Market: Exploiting the Actions of Less Informed Traders in Speculative Markets," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 39(7-8), pages 1131-1159, September.
    5. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    6. Ohtani, Kazuhiro, 2000. "Bootstrapping R2 and adjusted R2 in regression analysis," Economic Modelling, Elsevier, vol. 17(4), pages 473-483, December.
    7. Schnytzer, Adi & Lamers, Martien & Makropoulou, Vasiliki, 2010. "The impact of insider trading on forecasting in a bookmakers' horse betting market," International Journal of Forecasting, Elsevier, vol. 26(3), pages 537-542, July.
    8. Shaoming Cheng & Roger Stough, 2006. "Location decisions of Japanese new manufacturing plants in China: a discrete-choice analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 40(2), pages 369-387, June.
    9. Franck, Egon & Verbeek, Erwin & Nüesch, Stephan, 2010. "Prediction accuracy of different market structures -- bookmakers versus a betting exchange," International Journal of Forecasting, Elsevier, vol. 26(3), pages 448-459, July.
    10. Veall, Michael R & Zimmermann, Klaus F, 1996. "Pseudo-R-[superscript 2] Measures for Some Common Limited Dependent Variable Models," Journal of Economic Surveys, Wiley Blackwell, vol. 10(3), pages 241-259, September.
    11. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2012. "A new methodology for generating and combining statistical forecasting models to enhance competitive event prediction," European Journal of Operational Research, Elsevier, vol. 218(1), pages 163-174.
    12. Liu, Yu-Hsin, 2011. "Incorporating scatter search and threshold accepting in finding maximum likelihood estimates for the multinomial probit model," European Journal of Operational Research, Elsevier, vol. 211(1), pages 130-138, May.
    13. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V., 2009. "Identifying winners of competitive events: A SVM-based classification model for horserace prediction," European Journal of Operational Research, Elsevier, vol. 196(2), pages 569-577, July.
    14. Press, S. James & Zellner, Arnold, 1978. "Posterior distribution for the multiple correlation coefficient with fixed regressors," Journal of Econometrics, Elsevier, vol. 8(3), pages 307-321, December.
    15. Smith, Michael A. & Vaughan Williams, Leighton, 2010. "Forecasting horse race outcomes: New evidence on odds bias in UK betting markets," International Journal of Forecasting, Elsevier, vol. 26(3), pages 543-550, July.
    16. Lin, Kyle Y. & Sibdari, Soheil Y., 2009. "Dynamic price competition with discrete customer choices," European Journal of Operational Research, Elsevier, vol. 197(3), pages 969-980, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V. & Tai, Chung-Ching & Cheah, Eng-Tuck, 2019. "Improving prediction market forecasts by detecting and correcting possible over-reaction to price movements," European Journal of Operational Research, Elsevier, vol. 272(1), pages 389-405.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa Sperb, L.F. & Sung, M.-C. & Ma, T. & Johnson, J.E.V., 2022. "Turning the heat on financial decisions: Examining the role temperature plays in the incidence of bias in a time-limited financial market," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1142-1157.
    2. Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V. & Tai, Chung-Ching & Cheah, Eng-Tuck, 2019. "Improving prediction market forecasts by detecting and correcting possible over-reaction to price movements," European Journal of Operational Research, Elsevier, vol. 272(1), pages 389-405.
    3. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2012. "A new methodology for generating and combining statistical forecasting models to enhance competitive event prediction," European Journal of Operational Research, Elsevier, vol. 218(1), pages 163-174.
    4. Sperb, Luis Felipe Costa & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2019. "Keeping a weather eye on prediction markets: The influence of environmental conditions on forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 35(1), pages 321-335.
    5. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
    6. Ma, Tiejun & Tang, Leilei & McGroarty, Frank & Sung, Ming-Chien & Johnson, Johnnie E. V, 2016. "Time is money: Costing the impact of duration misperception in market prices," European Journal of Operational Research, Elsevier, vol. 255(2), pages 397-410.
    7. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    8. Dave Cliff, 2021. "BBE: Simulating the Microstructural Dynamics of an In-Play Betting Exchange via Agent-Based Modelling," Papers 2105.08310, arXiv.org.
    9. Yu, Dian & Gao, Jianjun & Wang, Tongyao, 2022. "Betting market equilibrium with heterogeneous beliefs: A prospect theory-based model," European Journal of Operational Research, Elsevier, vol. 298(1), pages 137-151.
    10. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    11. Ahn T. Le, 2003. "Female Labour Market Participation: Differences Between Primary and Tied Movers," Economics Discussion / Working Papers 03-17, The University of Western Australia, Department of Economics.
    12. Lovejoy, Kristin, 2012. "Mobility Fulfillment Among Low-car Households: Implications for Reducing Auto Dependence in the United States," Institute of Transportation Studies, Working Paper Series qt4v44b5qn, Institute of Transportation Studies, UC Davis.
    13. Iftekhar, M. S. & Tisdell, J. G., 2018. "Learning in repeated multiple unit combinatorial auctions: An experimental study," Working Papers 267301, University of Western Australia, School of Agricultural and Resource Economics.
    14. Raphael Flepp & Oliver Merz & Egon Franck, 2024. "When the league table lies: Does outcome bias lead to informationally inefficient markets?," Economic Inquiry, Western Economic Association International, vol. 62(1), pages 414-429, January.
    15. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    16. Patrick A. Puhani, 2000. "On the Identification of Relative Wage Rigidity Dynamics," William Davidson Institute Working Papers Series 343, William Davidson Institute at the University of Michigan.
    17. Thi Xuan Thu Nguyen & Javier Revilla Diez, 2017. "Multinational enterprises and industrial spatial concentration patterns in the Red River Delta and Southeast Vietnam," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 59(1), pages 101-138, July.
    18. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    19. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    20. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    21. Dreher, Axel & Nunnenkamp, Peter & Thiel, Susann & Thiele, Rainer, 2010. "Aid allocation by German NGOs: Does the degree of public refinancing matter?," University of Göttingen Working Papers in Economics 92, University of Goettingen, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:248:y:2016:i:3:p:1021-1030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.