IDEAS home Printed from https://ideas.repec.org/a/bbz/fcpbbr/v8y2011i2p01-21.html
   My bibliography  Save this article

Temporal series and neural networks: a comparative analysis of techniques in the Brazilian retail sales forecast

Author

Listed:
  • Claudio Felisoni de Angelo

    (FEA/USP)

  • Ronaldo Zwicker

    (FEA/USP)

  • Nuno Manoel Martins Dias Fouto

    (FEA/USP)

  • Marcos Roberto Luppe

    (FEA/USP)

Abstract

An important economic activity in any society regards the commercialization of assets. The retail consists exactly of the link established between the industry and the final consumer. To predict the sales is essential so that one can manage in a proper way the production and commercialization processes. In the retail, this aspect is even more important. To sale means to harmonize the concerns of those producing with those who buy. Therefore, this paper is intended to exam comparatively the application of two retail sales forecast methods in the Brazilian market: the temporal series and the neural networks. The selection of those two techniques as object of that comparison was aroused by the importance those two conceptions have assumed in the literature. Although the utilization of neural networks has provided the smallest sum of the squares of the residues, one may say that the results using models of the ARIMA type have shown to be practically equivalent.

Suggested Citation

  • Claudio Felisoni de Angelo & Ronaldo Zwicker & Nuno Manoel Martins Dias Fouto & Marcos Roberto Luppe, 2011. "Temporal series and neural networks: a comparative analysis of techniques in the Brazilian retail sales forecast," Brazilian Business Review, Fucape Business School, vol. 8(2), pages 01-21, April.
  • Handle: RePEc:bbz:fcpbbr:v:8:y:2011:i:2:p:01-21
    as

    Download full text from publisher

    File URL: http://bbronline.com.br/index.php/bbr/article/download/302/455
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Franses, Philip Hans, 2008. "Merging models and experts," International Journal of Forecasting, Elsevier, vol. 24(1), pages 31-33.
    2. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    3. Ang, Soon & O'Connor, Marcus, 1991. "The effect of group interaction processes on performance in time series extrapolation," International Journal of Forecasting, Elsevier, vol. 7(2), pages 141-149, August.
    4. Segura, J. V. & Vercher, E., 2001. "A spreadsheet modeling approach to the Holt-Winters optimal forecasting," European Journal of Operational Research, Elsevier, vol. 131(2), pages 375-388, June.
    5. Sniezek, Janet A., 1989. "An examination of group process in judgmental forecasting," International Journal of Forecasting, Elsevier, vol. 5(2), pages 171-178.
    6. Chu, Ching-Wu & Zhang, Guoqiang Peter, 2003. "A comparative study of linear and nonlinear models for aggregate retail sales forecasting," International Journal of Production Economics, Elsevier, vol. 86(3), pages 217-231, December.
    7. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    8. Brockhoff, Klaus, 1983. "Group processes for forecasting," European Journal of Operational Research, Elsevier, vol. 13(2), pages 115-127, June.
    9. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, W.K. & Guo, Z.X., 2010. "A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm," International Journal of Production Economics, Elsevier, vol. 128(2), pages 614-624, December.
    2. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    3. Fischer, Thomas & Krauss, Christopher & Treichel, Alex, 2018. "Machine learning for time series forecasting - a simulation study," FAU Discussion Papers in Economics 02/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2012. "Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation," Energy, Elsevier, vol. 39(1), pages 341-355.
    6. Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2013. "Hybrid methodology for hourly global radiation forecasting in Mediterranean area," Renewable Energy, Elsevier, vol. 53(C), pages 1-11.
    7. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    8. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    9. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    10. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    11. Icaro Romolo Sousa Agostino & Wesley Vieira da Silva & Claudimar Pereira da Veiga & Adriano Mendonça Souza, 2020. "Forecasting models in the manufacturing processes and operations management: Systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1043-1056, November.
    12. Soolmaz L. Azarmi & Akeem Adeyemi Oladipo & Roozbeh Vaziri & Habib Alipour, 2018. "Comparative Modelling and Artificial Neural Network Inspired Prediction of Waste Generation Rates of Hospitality Industry: The Case of North Cyprus," Sustainability, MDPI, vol. 10(9), pages 1-18, August.
    13. Au, Kin-Fan & Choi, Tsan-Ming & Yu, Yong, 2008. "Fashion retail forecasting by evolutionary neural networks," International Journal of Production Economics, Elsevier, vol. 114(2), pages 615-630, August.
    14. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    15. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
    16. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    17. Jeong, Kwangbok & Koo, Choongwan & Hong, Taehoon, 2014. "An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)," Energy, Elsevier, vol. 71(C), pages 71-79.
    18. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    19. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    20. Martin Madera & Dusan Marcek, 2023. "Intelligence in Finance and Economics for Predicting High-Frequency Data," Mathematics, MDPI, vol. 11(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bbz:fcpbbr:v:8:y:2011:i:2:p:01-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Lasso (email available below). General contact details of provider: https://edirc.repec.org/data/fucapbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.