IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003631.html
   My bibliography  Save this article

Based on hypernetworks and multifractals: Deep distribution feature fusion for multidimensional nonstationary time series prediction

Author

Listed:
  • Shen, Yuewen
  • Wen, Lihong
  • Shen, Chaowen

Abstract

It is commonly assumed that time series data follows a stationary distribution in time series prediction tasks, while the reality is that distribution drift issues are widespread. This study addresses the prediction of multi-dimensional non-stationary time series by proposing a solution that incorporates feature fusion based on classical fractal theory, specifically the multifractal spectrum width, and a hyper-network model. The HFMF (Hypernetwork Feature-Fusion Multidimensional Forecasting) network is designed, and innovative deep convolution modules, Mdff (Multidimensional deep feature fusion) and Dmff (Deep multifractal feature fusion), are introduced to fuse distribution information and time series information at the hyper-layer of the hyper-network. In the experimental section, extensive experiments are conducted on five publicly available datasets, including model performance testing, ablation experiments, generalization experiments, and other experiments. The results confirm the superior performance of our method in predicting multivariate non-stationary time series, surpassing other state-of-the-art techniques.

Suggested Citation

  • Shen, Yuewen & Wen, Lihong & Shen, Chaowen, 2024. "Based on hypernetworks and multifractals: Deep distribution feature fusion for multidimensional nonstationary time series prediction," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003631
    DOI: 10.1016/j.chaos.2024.114811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    2. Nikolaos Passalis & Anastasios Tefas & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Deep Adaptive Input Normalization for Time Series Forecasting," Papers 1902.07892, arXiv.org, revised Sep 2019.
    3. Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
    4. Xin Li & Qunxi Zhu & Chengli Zhao & Xiaojun Duan & Bolin Zhao & Xue Zhang & Huanfei Ma & Jie Sun & Wei Lin, 2024. "Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Pei Chen & Rui Liu & Kazuyuki Aihara & Luonan Chen, 2020. "Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    6. Wang, Meng & Wang, Wei & Wu, Lifeng, 2022. "Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China," Energy, Elsevier, vol. 243(C).
    7. Gómez-Gómez, Javier & Carmona-Cabezas, Rafael & Ariza-Villaverde, Ana B. & Gutiérrez de Ravé, Eduardo & Jiménez-Hornero, Francisco José, 2021. "Multifractal detrended fluctuation analysis of temperature in Spain (1960–2019)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    8. Wang, Xinyao & Jiang, Huanwen & Han, Guosheng, 2023. "Multiscale adaptive multifractal cross-correlation analysis of multivariate time series," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Han, Yan & Mi, Lihua & Shen, Lian & Cai, C.S. & Liu, Yuchen & Li, Kai & Xu, Guoji, 2022. "A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    2. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    3. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    4. Xu He & Qin-Lei Jing, 2022. "The Impact of Environmental Tax Reform on Total Factor Productivity of Heavy-Polluting Firms Based on a Dual Perspective of Technological Innovation and Capital Allocation," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    5. Yanghe Liu & Hairong Zhang & Chuanfeng Wu & Mengxin Shao & Liting Zhou & Wenlong Fu, 2024. "A Short-Term Wind Speed Forecasting Framework Coupling a Maximum Information Coefficient, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Shared Weight Gated Memory Network with Im," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    6. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    7. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    8. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    9. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    10. Meo, Marcos M. & Iaconis, Francisco R. & Del Punta, Jessica A. & Delrieux, Claudio A. & Gasaneo, Gustavo, 2024. "Multifractal information on reading eye tracking data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    11. Mi, Lihua & Shen, Lian & Han, Yan & Cai, C.S. & Zhou, Pinhan & Li, Kai, 2023. "Wind field simulation using WRF model in complex terrain: A sensitivity study with orthogonal design," Energy, Elsevier, vol. 285(C).
    12. Flici, Farid, 2020. "Muti-Scenarios Population Projection for Algeria using R," MPRA Paper 119600, University Library of Munich, Germany.
    13. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    14. Nascimento, Erick Giovani Sperandio & de Melo, Talison A.C. & Moreira, Davidson M., 2023. "A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy," Energy, Elsevier, vol. 278(C).
    15. Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
    16. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    17. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    18. Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
    19. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    20. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.