IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdps/312022.html
   My bibliography  Save this paper

A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series

Author

Listed:
  • Webel, Karsten

Abstract

Infra-monthly time series have increasingly appeared on the radar of official statistics in recent years, mostly as a consequence of a general digital transformation process and the outbreak of the COVID-19 pandemic in 2020. Many of those series are seasonal and thus in need for seasonal adjustment. However, traditional methods in official statistics often fail to model and seasonally adjust them appropriately mainly since data of such temporal granularity exhibit stylised facts that are not observable in monthly and quarterly data. Prime examples include irregular spacing, coexistence of multiple seasonal patterns with integer versus non-integer seasonal periodicities and potential interactions as well as small sample issues, such as missing values and a high sensitivity to outliers. We provide an overview of recent modelling and seasonal adjustment approaches that are capable of handling these distinctive features, or at least some of them. Hourly counts of TARGET2 customer transactions and daily realised electricity consumption in Germany are discussed for illustrative purposes.

Suggested Citation

  • Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdps:312022
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/262727/1/1814267867.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Dokumentov & Rob J. Hyndman, 2015. "STR: A Seasonal-Trend Decomposition Procedure Based on Regression," Monash Econometrics and Business Statistics Working Papers 13/15, Monash University, Department of Econometrics and Business Statistics.
    2. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    3. Tucker McElroy, 2017. "Multivariate Seasonal Adjustment, Economic Identities, and Seasonal Taxonomy," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 611-625, October.
    4. Craig F. Ansley & Robert Kohn, 1990. "Filtering And Smoothing In State Space Models With Partially Diffuse Initial Conditions," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(4), pages 275-293, July.
    5. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    6. Jose Ramon Cancelo & Antoni Espasa, 1996. "Modelling and forecastng daily series of electricity demand," Investigaciones Economicas, Fundación SEPI, vol. 20(3), pages 359-376, September.
    7. Keane, Michael & Neal, Timothy, 2021. "Consumer panic in the COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 220(1), pages 86-105.
    8. Valentina Aprigliano & Guerino Ardizzi & Libero Monteforte, 2019. "Using Payment System Data to Forecast Economic Activity," International Journal of Central Banking, International Journal of Central Banking, vol. 15(4), pages 55-80, October.
    9. [Reference to Proietti], Tommaso, 2000. "Comparing seasonal components for structural time series models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 247-260.
    10. Koopman, Siem Jan & Ooms, Marius, 2006. "Forecasting daily time series using periodic unobserved components time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
    11. Leschinski, Christian & Sibbertsen, Philipp, 2019. "Model order selection in periodic long memory models," Econometrics and Statistics, Elsevier, vol. 9(C), pages 78-94.
    12. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
    13. Florian Eckert & Heiner Mikosch, 2020. "Mobility and sales activity during the Corona crisis: daily indicators for Switzerland," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-10, December.
    14. Tucker McElroy & Thomas Trimbur, 2015. "Signal Extraction for Non-Stationary Multivariate Time Series with Illustrations for Trend Inflation," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 209-227, March.
    15. Harvey, Andrew & Koopman, Siem Jan & Riani, Marco, 1997. "The Modeling and Seasonal Adjustment of Weekly Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 354-368, July.
    16. Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020. "Realized stochastic volatility models with generalized Gegenbauer long memory," Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
    17. He, Changli & Kang, Jian & Teräsvirta, Timo & Zhang, Shuhua, 2019. "The shifting seasonal mean autoregressive model and seasonality in the Central England monthly temperature series, 1772–2016," Econometrics and Statistics, Elsevier, vol. 12(C), pages 1-24.
    18. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
    19. McElroy Tucker S. & Maravall Agustin, 2014. "Optimal Signal Extraction with Correlated Components," Journal of Time Series Econometrics, De Gruyter, vol. 6(2), pages 237-273, July.
    20. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    21. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
    22. Kang, Yanfei & Hyndman, Rob J. & Smith-Miles, Kate, 2017. "Visualising forecasting algorithm performance using time series instance spaces," International Journal of Forecasting, Elsevier, vol. 33(2), pages 345-358.
    23. Marcus J. Chambers, 1999. "A Note on Modelling Seasonal Processes in Continuous Time," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(2), pages 139-143, March.
    24. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    25. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    26. Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
    27. Ginters Buss, 2016. "Real‐Time Signal Extraction with Regularized Multivariate Direct Filter Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(3), pages 206-216, April.
    28. Taylor, James W. & Snyder, Ralph D., 2012. "Forecasting intraday time series with multiple seasonal cycles using parsimonious seasonal exponential smoothing," Omega, Elsevier, vol. 40(6), pages 748-757.
    29. S. J. Koopman & J. Durbin, 2003. "Filtering and smoothing of state vector for diffuse state‐space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 85-98, January.
    30. Taylor, James W., 2010. "Triple seasonal methods for short-term electricity demand forecasting," European Journal of Operational Research, Elsevier, vol. 204(1), pages 139-152, July.
    31. Wei Lin & Jianhua Z. Huang & Tucker McElroy, 2020. "Time Series Seasonal Adjustment Using Regularized Singular Value Decomposition," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 487-501, July.
    32. Yanele Nyamela & Vasilios Plakandaras & Rangan Gupta, 2020. "Frequency-dependent real-time effects of uncertainty in the United States: evidence from daily data," Applied Economics Letters, Taylor & Francis Journals, vol. 27(19), pages 1562-1566, November.
    33. Pierce, David A & Grupe, Michael R & Cleveland, William P, 1984. "Seasonal Adjustment of the Weekly Monetary Aggregates: A Model-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 260-270, July.
    34. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    35. Siem Jan Koopman & Marius Ooms, 2003. "Time Series Modelling of Daily Tax Revenues," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(4), pages 439-469, November.
    36. Lilian Shiao‐Yen Wu & J. R. M. Hosking & Nalini Ravishanker, 1993. "Reallocation Outliers in Time Series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(2), pages 301-313, June.
    37. Chambers, Marcus J. & McGarry, Joanne S., 2002. "Modeling Cyclical Behavior With Differential-Difference Equations In An Unobserved Components Framework," Econometric Theory, Cambridge University Press, vol. 18(2), pages 387-419, April.
    38. Barend Abeln & Jan P.A.M. Jacobs, 2015. "Seasonal adjustment with and without revisions: A comparison of X-13ARIMA-SEATS and CAMPLET," CAMA Working Papers 2015-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    39. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
    40. Wildi, Marc & McElroy, Tucker S., 2019. "The trilemma between accuracy, timeliness and smoothness in real-time signal extraction," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1072-1084.
    41. Santiago E. Alvarez & Sarah M. Lein, 2020. "Tracking inflation on a daily basis," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-13, December.
    42. Weinberg, Jonathan & Brown, Lawrence D. & Stroud, Jonathan R., 2007. "Bayesian Forecasting of an Inhomogeneous Poisson Process With Applications to Call Center Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1185-1198, December.
    43. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
    44. Huang, Jianhua Z. & Shen, Haipeng & Buja, Andreas, 2009. "The Analysis of Two-Way Functional Data Using Two-Way Regularized Singular Value Decompositions," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1609-1620.
    45. Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2009. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 194-217.
    46. Luisa Bisaglia & Silvano Bordignon & Francesco Lisi, 2003. "k -Factor GARMA models for intraday volatility forecasting," Applied Economics Letters, Taylor & Francis Journals, vol. 10(4), pages 251-254.
    47. Paul L. Anderson & Farzad Sabzikar & Mark M. Meerschaert, 2021. "Parsimonious time series modeling for high frequency climate data," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 442-470, July.
    48. Rong Chen & John L. Harris & Jun M. Liu & Lon-Mu Liu, 2006. "A semi-parametric time series approach in modeling hourly electricity loads," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 537-559.
    49. Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
    50. McElroy, Tucker S. & Holan, Scott H., 2016. "Computation of the autocovariances for time series with multiple long-range persistencies," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 44-56.
    51. Ron S. Jarmin, 2019. "Evolving Measurement for an Evolving Economy: Thoughts on 21st Century US Economic Statistics," Journal of Economic Perspectives, American Economic Association, vol. 33(1), pages 165-184, Winter.
    52. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    53. Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
    54. Nicolas Woloszko, 2020. "Tracking activity in real time with Google Trends," OECD Economics Department Working Papers 1634, OECD Publishing.
    55. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    56. Lourenço, Nuno & Rua, António, 2021. "The Daily Economic Indicator: tracking economic activity daily during the lockdown," Economic Modelling, Elsevier, vol. 100(C).
    57. Barend Abeln & Jan P. A. M. Jacobs, 2023. "CAMPLET: Seasonal Adjustment Without Revisions," SpringerBriefs in Economics, in: Seasonal Adjustment Without Revisions, chapter 0, pages 7-29, Springer.
    58. Hindrayanto, Irma & Jacobs, Jan P.A.M. & Osborn, Denise R. & Tian, Jing, 2019. "Trend–Cycle–Seasonal Interactions: Identification And Estimation," Macroeconomic Dynamics, Cambridge University Press, vol. 23(8), pages 3163-3188, December.
    59. Pascal Seiler, 2020. "Weighting bias and inflation in the time of COVID-19: evidence from Swiss transaction data," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-11, December.
    60. Voges, Michelle & Sibbertsen, Philipp, 2021. "Cyclical fractional cointegration," Econometrics and Statistics, Elsevier, vol. 19(C), pages 114-129.
    61. Pedregal, Diego J. & Young, Peter C., 2006. "Modulated cycles, an approach to modelling periodic components from rapidly sampled data," International Journal of Forecasting, Elsevier, vol. 22(1), pages 181-194.
    62. António Casimiro Puindi & Maria Eduarda Silva, 2021. "Dynamic structural models with covariates for short-term forecasting of time series with complex seasonal patterns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(5), pages 804-826, April.
    63. Cottet R. & Smith M., 2003. "Bayesian Modeling and Forecasting of Intraday Electricity Load," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 839-849, January.
    64. Bordignon, Silvano & Caporin, Massimiliano & Lisi, Francesco, 2007. "Generalised long-memory GARCH models for intra-daily volatility," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5900-5912, August.
    65. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    66. Gerhard Fenz & Helmut Stix, 2021. "Monitoring the economy in real time with the weekly OeNB GDP indicator: background, experience and outlook," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), issue Q4/20-Q1/, pages 17-40.
    67. Nikolaos Askitas & Klaus F. Zimmermann, 2013. "Nowcasting Business Cycles Using Toll Data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(4), pages 299-306, July.
    68. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
    69. Wildi Marc & McElroy Tucker, 2016. "Optimal Real-Time Filters for Linear Prediction Problems," Journal of Time Series Econometrics, De Gruyter, vol. 8(2), pages 155-192, July.
    70. McElroy, Tucker S. & Wildi, Marc, 2020. "The Multivariate Linear Prediction Problem: Model-Based and Direct Filtering Solutions," Econometrics and Statistics, Elsevier, vol. 14(C), pages 112-130.
    71. McElroy, Tucker, 2008. "Matrix Formulas For Nonstationary Arima Signal Extraction," Econometric Theory, Cambridge University Press, vol. 24(4), pages 988-1009, August.
    72. Piet De Jong & Singfat Chu‐Chun‐Lin, 2003. "Smoothing With An Unknown Initial Condition," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 141-148, March.
    73. Claudia Biancotti & Alfonso Rosolia & Giovanni Veronese & Robert Kirchner & Francois Mouriaux, 2021. "Covid-19 and official statistics: a wakeup call?," Questioni di Economia e Finanza (Occasional Papers) 605, Bank of Italy, Economic Research and International Relations Area.
    74. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvana Tiedemann & Jorge Sanchez Canales & Felix Schur & Raffaele Sgarlato & Lion Hirth & Oliver Ruhnau & Jonas Peters, 2024. "Identifying Elasticities in Autocorrelated Time Series Using Causal Graphs," Papers 2409.15530, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
    3. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    4. Proietti, Tommaso & Pedregal, Diego J., 2023. "Seasonality in High Frequency Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 62-82.
    5. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
    6. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    7. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    8. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    9. Mauro Bernardi & Lea Petrella, 2015. "Multiple seasonal cycles forecasting model: the Italian electricity demand," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 671-695, November.
    10. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    11. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    12. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Forecasting day-ahead electricity load using a multiple equation time series approach," European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
    13. Cancelo, José Ramón & Grafe, Rosmarie, 2007. "Forecasting from one day to one week ahead for the Spanish system operator," DES - Working Papers. Statistics and Econometrics. WS ws078418, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
    15. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    16. Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
    17. Arora, Siddharth & Taylor, James W., 2018. "Rule-based autoregressive moving average models for forecasting load on special days: A case study for France," European Journal of Operational Research, Elsevier, vol. 266(1), pages 259-268.
    18. Jose Juan Caceres-Hernandez & Gloria Martin-Rodriguez & Jonay Hernandez-Martin, 2022. "A proposal for measuring and comparing seasonal variations in hourly economic time series," Empirical Economics, Springer, vol. 62(4), pages 1995-2021, April.
    19. Ollech, Daniel, 2018. "Seasonal adjustment of daily time series," Discussion Papers 41/2018, Deutsche Bundesbank.
    20. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.

    More about this item

    Keywords

    official statistics; seasonality; signal extraction; time series decomposition; unobserved components;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdps:312022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.