Modelling receiver operating characteristic curves using Gaussian mixtures
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2015.04.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Donald Dorfman & Edward Alf, 1968. "Maximum likelihood estimation of parameters of signal detection theory—A direct solution," Psychometrika, Springer;The Psychometric Society, vol. 33(1), pages 117-124, March.
- Hall, Peter G. & Hyndman, Rob J., 2003.
"Improved methods for bandwidth selection when estimating ROC curves,"
Statistics & Probability Letters, Elsevier, vol. 64(2), pages 181-189, August.
- Peter Hall & Rob J. Hyndman, 2002. "An Improved Method for Bandwidth Selection when Estimating ROC Curves," Monash Econometrics and Business Statistics Working Papers 11/02, Monash University, Department of Econometrics and Business Statistics.
- Kelly Zou & W. J. Hall, 2000. "Two transformation models for estimating an ROC curve derived from continuous data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 621-631.
- Jing Qin, 2003. "Using logistic regression procedures for estimating receiver operating characteristic curves," Biometrika, Biometrika Trust, vol. 90(3), pages 585-596, September.
- Lopez-de-Ullibarri, Ignacio & Cao, Ricardo & Cadarso-Suarez, Carmen & Lado, Maria J., 2008. "Nonparametric estimation of conditional ROC curves: Application to discrimination tasks in computerized detection of early breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2623-2631, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alicja Jokiel-Rokita & Rafał Topolnicki, 2019. "Minimum distance estimation of the binormal ROC curve," Statistical Papers, Springer, vol. 60(6), pages 2161-2183, December.
- Zhongkai Liu & Howard D. Bondell, 2019. "Binormal Precision–Recall Curves for Optimal Classification of Imbalanced Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 141-161, April.
- Zhang, Biao, 2006. "A semiparametric hypothesis testing procedure for the ROC curve area under a density ratio model," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1855-1876, April.
- Kang, Le & Tian, Lili, 2013. "Estimation of the volume under the ROC surface with three ordinal diagnostic categories," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 39-51.
- Y. Huang & M. S. Pepe, 2009. "A Parametric ROC Model-Based Approach for Evaluating the Predictiveness of Continuous Markers in Case–Control Studies," Biometrics, The International Biometric Society, vol. 65(4), pages 1133-1144, December.
- Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
- Yousef, Waleed A. & Kundu, Subrata & Wagner, Robert F., 2009. "Nonparametric estimation of the threshold at an operating point on the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4370-4383, October.
- Coolen-Maturi, Tahani & Elkhafifi, Faiza F. & Coolen, Frank P.A., 2014. "Three-group ROC analysis: A nonparametric predictive approach," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 69-81.
- Chang, Yuan-chin Ivan & Park, Eunsik, 2009. "Constructing the best linear combination of diagnostic markers via sequential sampling," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1921-1927, September.
- Elisa–María Molanes-López & Ricardo Cao, 2008. "Relative density estimation for left truncated and right censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 693-720.
- Wang, Dan & Tian, Lili, 2017. "Parametric methods for confidence interval estimation of overlap coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 12-26.
- Edler, Lutz & Lee, Jae Won & Mittlböck, Martina & Niland, Joyce & Victor, Norbert, 2009. "Computational statistics within clinical research," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 583-585, January.
- Gu Wen & Pepe Margaret, 2009. "Measures to Summarize and Compare the Predictive Capacity of Markers," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-49, October.
- Lopez-de-Ullibarri, Ignacio & Cao, Ricardo & Cadarso-Suarez, Carmen & Lado, Maria J., 2008. "Nonparametric estimation of conditional ROC curves: Application to discrimination tasks in computerized detection of early breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2623-2631, January.
- Wang, Suohong & Zhang, Biao, 2014. "Semiparametric empirical likelihood confidence intervals for AUC under a density ratio model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 101-115.
- Sean F. Reardon & Andrew D. Ho, 2015. "Practical Issues in Estimating Achievement Gaps From Coarsened Data," Journal of Educational and Behavioral Statistics, , vol. 40(2), pages 158-189, April.
- Juana-María Vivo & Manuel Franco & Donatella Vicari, 2018. "Rethinking an ROC partial area index for evaluating the classification performance at a high specificity range," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 683-704, September.
- To, Duc-Khanh & Adimari, Gianfranco & Chiogna, Monica, 2022. "Estimation of the volume under a ROC surface in presence of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Rodríguez-Álvarez, María Xosé & Tahoces, Pablo G. & Cadarso-Suárez, Carmen & Lado, María José, 2011. "Comparative study of ROC regression techniques--Applications for the computer-aided diagnostic system in breast cancer detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 888-902, January.
- Chris J. Lloyd, 2000. "Regression Models for Convex ROC Curves," Biometrics, The International Biometric Society, vol. 56(3), pages 862-867, September.
More about this item
Keywords
Binormal curve; EM algorithm; Gaussian mixture distributions; LABROC; Mixture models; Monte Carlo method; ROC curve;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:192-208. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.