IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1459-d1054811.html
   My bibliography  Save this article

Projecting Annual Rainfall Timeseries Using Machine Learning Techniques

Author

Listed:
  • Kyriakos Skarlatos

    (Department of Business Administration, University of Piraeus, 18534 Piraeus, Greece)

  • Eleni S. Bekri

    (Department of Civil Engineering, University of Patras, 26504 Patras, Greece)

  • Dimitrios Georgakellos

    (Department of Business Administration, University of Piraeus, 18534 Piraeus, Greece)

  • Polychronis Economou

    (Department of Civil Engineering, University of Patras, 26504 Patras, Greece)

  • Sotirios Bersimis

    (Department of Business Administration, University of Piraeus, 18534 Piraeus, Greece)

Abstract

Hydropower plays an essential role in Europe’s energy transition and can serve as an important factor in the stability of the electricity system. This is even more crucial in areas that rely strongly on renewable energy production, for instance, solar and wind power, as for example the Peloponnese and the Ionian islands in Greece. To safeguard hydropower’s contribution to total energy production, an accurate prediction of the annual precipitation is required. Valuable tools to obtain accurate predictions of future observations are firstly a series of sophisticated data preprocessing techniques and secondly the use of advanced machine learning algorithms. In the present paper, a complete procedure is proposed to obtain accurate predictions of meteorological data, such as precipitation. This procedure is applied to the Greek automated weather stations network, operated by the National Observatory of Athens, in the Peloponnese and the Ionian islands in Greece. The proposed prediction algorithm successfully identified the climatic zones based on their different geographic and climatic characteristics for most meteorological stations, resulting in realistic precipitation predictions. For some stations, the algorithm underestimated the annual total precipitation, a weakness also reported by other research works.

Suggested Citation

  • Kyriakos Skarlatos & Eleni S. Bekri & Dimitrios Georgakellos & Polychronis Economou & Sotirios Bersimis, 2023. "Projecting Annual Rainfall Timeseries Using Machine Learning Techniques," Energies, MDPI, vol. 16(3), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1459-:d:1054811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1459/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pfeiffer, Olivia & Nock, Destenie & Baker, Erin, 2021. "Wind energy's bycatch: Offshore wind deployment impacts on hydropower operation and migratory fish," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    3. Kostas Moustris & Ioanna Larissi & Panagiotis Nastos & Athanasios Paliatsos, 2011. "Precipitation Forecast Using Artificial Neural Networks in Specific Regions of Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1979-1993, June.
    4. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    5. Muhammad Shahzad Nazir & Fahad Alturise & Sami Alshmrany & Hafiz. M. J Nazir & Muhammad Bilal & Ahmad N. Abdalla & P. Sanjeevikumar & Ziad M. Ali, 2020. "Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    6. Sotiris Bersimis & Kostas Triantafyllopoulos, 2020. "Dynamic Non-parametric Monitoring of Air-Pollution," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1457-1479, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    2. Eleni-Zacharoula Georgiou & Maria Skondra & Marina Charalampopoulou & Panagiotis Felemegkas & Asimina Pachi & Georgia Stafylidou & Dimitrios Papazachariou & Robert Perneczky & Vasileios Thomopoulos & , 2023. "Validation of the test for finding word retrieval deficits (WoFi) in detecting Alzheimer's disease in a naturalistic clinical setting," European Journal of Ageing, Springer, vol. 20(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
    2. Kübra Tümay Ateş, 2023. "Estimation of Short-Term Power of Wind Turbines Using Artificial Neural Network (ANN) and Swarm Intelligence," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    3. Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
    4. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    5. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    6. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    7. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    8. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    9. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    11. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    12. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    13. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    14. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    15. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    16. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    17. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    18. Thomas Horvath & Peter Huber & Ulrike Huemer & Helmut Mahringer & Philipp Piribauer & Mark Sommer & Stefan Weingärtner, 2022. "Mittelfristige Beschäftigungsprognose für Österreich und die Bundesländer. Berufliche und sektorale Veränderungen 2021 bis 2028," WIFO Studies, WIFO, number 70720, April.
    19. Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
    20. de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1459-:d:1054811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.